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What could we do with layered structures
with just the right layers? What would the
properties of materials be if we could really
arrange the atoms the way we want them?
. . . I am not afraid to consider the final
question as to whether, ultimately—in the
great future—we can arrange the atoms the
way we want; the very atoms, all the way
down!

—R.P. Feynman, “There’s plenty of room
at the bottom,” 1959
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Supervisor’s Foreword

In 2004, Andre Geim, Konstantin Novoselov, and coworkers at the University of
Manchester published a paper1 in which they reported fabrication of an electronic
device on a sheet of carbon atoms that was only 1 atom in thickness. So began
the field of two-dimensional layered materials, which has since produced many
thousands of publications in the disciplines of physics, chemistry, materials science,
electrical engineering, and chemical engineering. The single layer of carbon atoms
(a monolayer) of the type used by Geim and Novoselov became known as graphene,
and it is most easily produced by exfoliating layers off of a graphite crystal. The
same procedure can be used to produce atomic layers of other materials, including
transition metal dichalcogenide (TMD) materials such as MoS2 and WSe2. It is
important to note that research (and application) of layered materials such as these
has gone on for many decades. However, the ability to exfoliate the layers in order to
produce micrometer-size monolayer-thick flakes, to place these flakes on a holding
wafer (a substrate), and then to produce an electronic device and/or circuit on the
flakes is something that has been possible only since 2004. For this achievement,
Geim and Novoselov were awarded the Nobel Prize in Physics in 2010.

The Ph.D. thesis of Sergio C. de la Barrera, while awarded in a Physics
department, could perhaps more accurately be described as belonging to the research
field of semiconductor surface and interface science (including tunneling devices).
This field is comprised of thousands of researchers worldwide devoted to the
study of specific classes of semiconductor materials, each of which has their own
range of applications. Within this field, graphene and related materials have been
very actively studied over the past decade for the purposes of both understanding
their fundamental properties and utilizing them in electronic applications (e.g., for
beyond Moore’s law devices and circuits).

1K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva,
and A.A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669,
October 2004. doi:10.1126/science.1102896.
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x Supervisor’s Foreword

One additional item that is important to understand regarding the study of two-
dimensional (2D) layered materials is that the micrometer-size flakes described
above, while sufficient for studies of fundamental properties and individual elec-
tronic devices, are totally unsuitable for large-scale production of devices. For
that, one must employ the established methods of the semiconductor industry,
consisting of parallel production of many devices on a wafer that is many tens (or
several hundred) centimeters in diameter. For this purpose, the exfoliation method is
insufficient, and one must employ thin film deposition methods of the type used for
non-2D materials. Hence, the materials science of epitaxial growth is an essential
element in the study of 2D materials and devices.

In his Ph.D. thesis, Dr. de la Barrera advances the state of the art in several
aspects of the 2D field, including both experimental and theoretical research. The
technique of low-energy electron microscopy is employed to study the surface of
monolayer WSe2 deposited by metal-organic chemical vapor deposition on epitaxial
graphene substrates, and a method for unambiguously measuring the number of
atomic layers is formulated. Using the very low-energy electrons of this instrument
to probe the surface of WSe2 on epitaxial graphene, adjoining bare epitaxial
graphene, work function differences between the WSe2 and graphene are measured
and these are used to deduce the nature of the electrical contact between WSe2
and graphene. A theory for computing tunneling currents between two-dimensional
crystals separated by a thin insulating barrier is developed, and a few situations
that result in resonant tunneling and negative differential resistance are illustrated
by computed examples. The computations are compared with recent experimental
observations from other research groups, and good agreement between experiment
and theory is obtained.

Pittsburgh, PA, USA Prof. Randall M. Feenstra
July 2017
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Chapter 1
Introduction

The periodic arrangement of atoms known to physicists as the solid state has long
been the playground of condensed matter physicists, materials scientists, electrical
engineers, and the various other experts involved in the fields of nanoscience and
nanotechnology. In the atomically thin limit, that is, a single sheet of atoms arranged
in a crystalline lattice, the physics that govern particle and quasiparticle behavior
are compressed from the three spatial dimensions we live in down to two. In this
state, many new and interesting phenomena emerge as a result of the reduced
dimensionality, and it is the physics of such two-dimensional materials that concerns
this thesis.

Living in a three-dimensional world affords us an additional degree of freedom
when dealing with two-dimensional materials. By controlling the physical condi-
tions and geometry of individual two-dimensional layers with three-dimensional
forces, effects, and substrates, we are able to influence the behavior in two dimen-
sions to great effect. Even the simple act of stacking several two-dimensional layers
on top of one another to form a layered structure can cause dramatic changes in the
properties of the individual layers, in addition to the composite layered structure as
a whole. In this thesis, I consider a few select layered structures of dissimilar two-
dimensional materials, two-dimensional heterostructures, and investigate interlayer
interactions that occur between them from the framework of quantum tunneling.

The following sections of this introductory chapter provide background material
pertaining to the field of two-dimensional materials and quantum tunneling from
the standpoint of resonant behavior. The thesis contains a mix of experimental
observations and results from computations and simulations of physics. Chapter 2
covers a few of the major experimental techniques that are employed in the scope
of this work, outlining the method of low-energy electron microscopy and its
utility in atomically thin materials research. These methods are applied to thin
heterostructures of tungsten diselenide and epitaxial graphene in Chap. 3, where a
novel technique for counting the number of atomic layers is presented. Chapter 4
covers the topic of tunneling transport in similar structures, specifically identifying
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two distinct cases of electrical transport between the tungsten diselenide and
graphene based on the method of preparation. Heterostructures of molybdenum
diselenide and epitaxial graphene are studied in Chap. 5, wherein the experimental
methods developed in the thesis are utilized to measure the defect density of the
crystals.

Additional background for the theory of tunneling between two-dimensional
layers is outlined and extended to include realistic calculations of the electrostatics
in Chap. 6. Chapters 7 and 8 carry this work forward by applying the theory to the
cases of tunneling between monolayers of graphene and bilayers of graphene in
great detail. In Chap. 9, a discussion of ongoing activities related to state-of-the-art
assembly of interlayer tunneling heterostructures and devices is provided along with
an outlook toward future prospects. Finally the results of the entirety of this work
are summarized in Chap. 10. My work in this area has been highly productive in
the time that I have had the pleasure of being involved. To this point, portions of
the thesis have appeared in published form in Refs. [1–6], as noted in each relevant
section.

1.1 Two-dimensional Materials: A New Paradigm for Physics
in Reduced Dimensions

Prior to the first experimental realization of graphene in 2004 [7], it was widely
believed that layered materials could not exist in a freestanding, atomically thin
form. In fact Peierls [8], Landau [9], and Mermin [10], each proposed arguments
for the fundamental instability of two-dimensional crystals which were regarded as
proof of nonexistence for many decades. Physics research in two-dimensional solid
state systems was therefore confined to quantum wells and thin films, quasi-two-
dimensional layers of electron gas confined to a narrow geometry in one dimension
while extending out laterally in the other two, embedded in bulk (3D) materials.

Within this context, the first explicit demonstration of a stable two-dimensional
(2D) crystal, graphene, was an immense discovery [7, 11] that initiated a new field of
research; one that would have great impact on many related fields in a short period of
time. From the viewpoint of electronic behavior, graphene is a semimetal, meaning
that it conducts electrons freely (despite a special point in the band structure that
has a vanishing density-of-states). In normal conditions the electrons in graphene
naturally behave as a two-dimensional electron gas (2DEG), which is in stark
contrast to the interfacial engineering required in many conventional quantum well
systems in order to produce 2DEG physics. Since the electrons in graphene are
quantum-mechanically confined to the 2D layer, it is 2D physics that they obey.

Due to the relative ease with which 2D materials could be synthesized, the
field of 2D materials research quickly expanded beyond graphene to include
insulating hexagonal boron nitride, semiconducting MoS2, and superconducting
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NbSe2 [12–14], followed by many others [15, 16]. Each of these materials provides
a platform for investigating interesting and novel physics, but it is the combination
of such materials in particular arrangements, two-dimensional heterostructures,
that enables the greatest number of possibilities. As Feynman proposed in his
now-famous lecture in 1959, “There’s plenty of room at the bottom,” layered het-
erostructures in particular are expected to produce new properties and phenomena
that are not possible in the constituent materials alone [17]. This was a great insight,
put forth at a time when fabrication of such structures was well out of the realm of
possibility. After many decades of progress in the field, a catalog of 2D materials and
advanced methods for synthesis of these materials into layered structures are finally
available. With these elements in place, it is the subject of this thesis to consider a
few such structures and, specifically, tunneling phenomena that may occur between
vertically-stacked layers of 2D crystals.

1.1.1 Graphite in the Few-Layer Limit

The basic properties of atomically thin graphite were first derived by Wallace in
1947, wherein the bands of a single atomic layer of graphite (later designated
graphene) were calculated analytically by the tight-binding method and subse-
quently used to derive properties of bulk graphite [18]. In this work, Wallace showed
that the planar arrangement of carbon atoms in a honeycomb lattice (Fig. 1.1)
produced unusual semimetallic behavior near the Fermi energy for neutral graphene
(Fig. 1.2). In a straightforward tight-binding description, orbitals of the two basis

A B

armchair

zi
g-

za
g

Γ M

K

K ′

K

K ′

K

K ′

b1

b2

(a) (b)

Fig. 1.1 (a) Atomic structure of graphene viewed from the out-of-plane direction, with side-
views also given along two edges (armchair and zig-zag). There are two carbon atoms per unit cell
(shaded area), each belonging to a triangular sublattice A or B. (b) First Brillouin zone (BZ) of the
graphene lattice in reciprocal space. Inequivalent symmetry points K and K0 exist at the six corners
of the BZ, whereas M occurs at the midpoint between neighboring K and K0 points
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Fig. 1.2 (a) Band structure of monolayer graphene produced by the tight-binding method with
nearest-neighbor hopping energy t D 2:8 eV and next-nearest-neighbor hopping t0 D �0:4 eV.
The conduction and valance bands touch at the six corners of the first Brillouin zone, leading to
semimetallic behavior. (b) Slice of the band structure taken from the dashed box in panel (a) along
the line of symmetry K0–�–K, with the conduction and valence bands in blue and red, respectively.
The Fermi level and vacuum level for neutral graphene are labeled as � and Evac. (c) Blow-up of
the detailed bands near the Dirac point, where E.kk/ is linear and the conduction and valance bands
touch

atoms A and B, each of which decorate a triangular lattice, are parameterized by
nearest-neighbor hopping energy t (from sublattice A to sublattice B) and next-
nearest-neighbor hopping energy t0 (hopping within the same sublattice). This
description permits an analytical form for the band structure (the energies of allowed
states as a function of lateral wavevector, or crystal momentum k) [18, 19],
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3C f .k/ � t0f .k/;

f .k/ D 2 cos
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�
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2

�
cos

 p
3

2
kxa

!

;
(1.1)

which is shown for the first Brillouin zone (BZ) in Fig. 1.2a,1 with lattice constant
a D 2:46 Å.

The primary result of this simple calculation is that the conduction and valence
bands (C and � signs in Eq. (1.1), respectively) touch at six degenerate points in
momentum space, and most importantly, the energy varies linearly with wavevector
near these points, as shown in Fig. 1.2c. The linear dependence can be written down
explicitly by expanding Eq. (1.1) around k ! K (or K0), where K (K0) is a vector
pointing to the high-symmetry point K (K0) at the corner of the BZ, where the bands
touch,

E˙.q/ � ˙vFjqj C O
�
.q=K /2

�
; (1.2)

where q � k � K and vF � p
3ta
.
2 is the Fermi velocity. The fact that electronic

behavior in this regime is governed by a linear dispersion relation (E / q), typical of
massless particles, is a miraculous result, and a significant departure from the usual
dispersion of electrons, E � k2

ı
2m with effective electron mass m. Moreover,

the Fermi velocity vF does not depend on energy at all, whereas it is usually
v D k=m � p

2E=m . In fact, vF is a constant value near the K and K0 symmetry
points in graphene, speeding electrons along at close to vF � c=300 � 1 � 106 m/s
[18, 19]. Thus the electrons in graphene behave as massless particles with linear
dispersion.

This analysis can be taken a step further by noting that a linear dispersion directly
results from a Dirac-like Hamiltonian in two dimensions [19, 20],

HK D vF� � k; (1.3a)

HK0 D vF� � � k; (1.3b)

around the K and K0 points, where k is now relative to an origin placed at K or
K0, utilizing the Pauli matrices � D .�x; �y/ and � � D .�x;��y/. The eigenenergies
from both copies of this Hamiltonian are E D ˙vFk, as in the linear part of Eq. (1.2),
and the eigenstates (around K and K0, respectively) have the form

 ˙;K.k/ D 1p
2

�
e�i�k=2

˙ei�k=2

�
; (1.4a)

 ˙;K0.k/ D 1p
2

�
ei�k=2

˙e�i�k=2

�
: (1.4b)

1In this section, units are selected such that „ D 1.
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These wavefunctions are valid for describing electrons in graphene when jkj �
jKj D 4�=3a , and the Dirac-like nature of the electrons in this regime leads to
the term Dirac fermions. As a final point of nomenclature, the six points at which
the conduction and valence bands touch are referred to as the Dirac points, and
the linear bands near these points, Dirac cones. There is one valence electron per
atomic site in the graphene lattice, and thus the valence band is completely filled
and the conduction band empty in neutral graphene at zero temperature. As a result,
the Fermi level in these conditions is found at the energy where the bands touch
(Fig. 1.2b), the so-called charge neutrality point.

1.1.2 Hexagonal Boron Nitride: An Ultraflat Wide-Band-Gap
Insulator

The semimetallic behavior of graphene is a result of the high symmetry of the
lattice of carbon atoms. Specifically, the equivalence of the potentials at the A and
B sublattice sites prevents the existence of a band gap, allowing the conduction
and valence bands to touch at the charge neutrality point. In contrast to this
picture, hexagonal boron nitride (h-BN), although it has the same lattice structure
as graphene, possesses two inequivalent atoms per unit cell (Fig. 1.3), lowering
the symmetry compared to graphene and thus opening up a band gap in the band
structure (Fig. 7.2). As such, h-BN is a wide-band-gap insulator, with a band gap

B N

Fig. 1.3 Atomic structure of monolayer hexagonal boron nitride (h-BN) viewed from the out-of-
plane direction. There is one boron atom (blue) and one nitrogen atom (red) per unit cell (shaded
area), populating two inequivalent triangular sublattices. The in-plane lattice constant of h-BN is
2:50 Å, close to 1:6 % larger than that of graphene, leading to an approximate 1:6 % reduction in
the size of the Brillouin zone in reciprocal space, and hence smaller diffraction patterns by the
same amount
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energy near 6 eV [21]. Due to strong, in-plane covalent bonds and weak interlayer
interactions, h-BN is a layered material, similar to graphite, and it is highly stable
in thicknesses down to a single layer.

Most importantly for graphene studies, however, is that due to its inherent flat-
ness, inertness, and large band gap, h-BN makes a fantastic substrate, encapsulation
layer, and tunneling barrier for 2D heterostructures of all kinds. Boron nitride has
been shown to increase the flatness of supported graphene (roughness or curvature
tends to introduce potential fluctuations in graphene, among other complications)
[15], to vastly reduce spatial potential inhomogeneities in the graphene [22], and
to increase the electron mobility in graphene by at least one order of magnitude
compared to bulk substrates [23].

In the scope of this thesis, h-BN will primarily be viewed as a convenient
insulating material; a dielectric material with a permittivity close to 4�0, and a
tunneling barrier with decay constant � � 6 nm−1, varying slightly in momentum
space (see Sect. 7.3). Insofar as the h-BN serves one function or the other is largely
a question of the thickness, with h-BN substrates and gate dielectrics typically
utilizing � 20 nm or so of h-BN layers, whereas tunneling applications require
no more than 2 to 6 monolayers to be effective. For studies involving low-energy
electron microscopy, it is the high-energy bands (above the vacuum level) that are
relevant, and in this regime h-BN can be considered quite similar to graphene, as
will be discussed in Sect. 3.4.

1.1.3 Semiconductors in Two Dimensions: Transition Metal
Dichalcogenides

Shortly after the isolation of graphene in its monolayer form, the first true 2D
semiconductor was similarly reduced to two dimensions, MoS2 [12]. This material,
a transition metal dichalcogenide (TMD), possesses strong ionic-covalent bonds
within each layer and weak interlayer interactions, similar to graphene and h-
BN, however, there are in fact three atomic planes comprising each “monolayer”
of TMD,2 as shown schematically in Fig. 1.4. Each layer of TMD material
(with general formula MX2) is composed of a central atomic layer of transition
metal atoms (M) in a triangular sublattice sandwiched between two atomic layers
of chalcogen atoms (X), with the chalcogens arranged in a trigonal prismatic

2Conceding that one of these layers is technically not the thickness of a single atom, one could
more precisely call this a crystalline monolayer or a van der Waals monolayer, although the
distinction is typically irrelevant for situations in which the electronic behavior is still governed
by 2D physics. Hence, for the purposes of this thesis, the term monolayer will be used to refer
to a single crystalline monolayer, with three atomic planes in cases dealing with transition metal
dichalcogenide materials.
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coordination.3 Previous studies of bulk MoS2 established that it is an indirect-
band-gap semiconductor, meaning that the conduction band minimum and valence
band maximum occur at different points in momentum space. Early work with
MoS2 in the few-layer limit, however, revealed that reducing the number of layers
leads to an increasing band gap energy, and strikingly, monolayer MoS2 obtains
a direct band-gap, with conduction and valence band extrema occurring at the
same point in k-space [14]. Neither type of band gap is unusual in conventional
semiconductors, but the transition from one type to the other caused by the reduction
in dimensionality suggests that this is indeed a class of materials worth investigating.

In fact, there are many unique and superlative properties of TMD materials,
most of which are beyond the scope of this thesis. Here, we will primarily be
concerned with the utility of TMD materials as 2D semiconductors, with band
gaps, electron affinities, and densities-of-states that may prove advantageous for
electronic devices, especially tunneling structures. Along those lines, it is worth
pointing out that there are several possible phases of TMD crystal structures: 2H, 1T,
1T0, and 1Td, each with slightly different arrangement of the metal and chalcogen
atoms within each atomic plane. Throughout the thesis, the samples studied are
either assumed or revealed to be largely of the 2H (hexagonal) variety, as shown in
Fig. 1.4, and thus the distinction will not be made beyond this point.

top view

side view

ed
ge

vi
ew

M

X

X

Fig. 1.4 Atomic structure of a generic transition metal dichalcogenide with the formula 2H-
MX2, one with metal M and two chalcogen X atoms per unit cell (for example, M 2 fW;Mog,
X 2 fS;Se;Teg). Side views emphasize the coexistence of three separate atomic planes; the
metallic plane being sandwiched between chalcogen layers. Lattice constants vary depending on
the constituents, but are generally about 30 % larger than that of graphene, and thus diffraction
patterns are easily differentiated from those resulting from graphene

3Trigonal prismatic coordination of the chalcogens is found in the 2H polytype of TMD crystals;
others are also possible but will not feature in the thesis.
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1.2 Resonant Tunneling Physics in Its Various Forms

Having established the materials that will enter into the work described in this
thesis, it is the task of this section to introduce the tunneling concepts that arise
as motivation, and for reference in later chapters. Whereas Chaps. 3 and 5 deal
primarily with materials characterization, abstracted from the intended purpose
of fabricating interlayer tunneling devices, Chaps. 4, 7, and 8 involve tunneling
directly. The overarching goal of this work has been to design and eventually
fabricate interlayer tunneling devices that take advantage of 2D–2D tunneling
physics to exhibit novel and desirable electronic behavior. Before we advance to
the specific modes of tunneling that appear in the thesis, we must establish the
context in which this work in relevant. The term resonant tunneling has been used
with several, somewhat disjoint meanings in physics and electrical engineering. The
observation that these share in common is negative differential resistance, but the
underlying mechanism that causes this is different in each case. There are whole
bodies of literature pertaining to each of these mechanisms, so I will only provide a
brief overview here for purposes of comparison to the physics that will be discussed
in the thesis.

1.2.1 Esaki Tunnel Diode

The first demonstration of quantum tunneling in a solid state system was, in fact,
a form of resonant tunneling observed by Esaki [24]. By measuring the current
across highly doped germanium in a p–n junction, Esaki more or less stumbled
upon the phenomenon which now takes his name (and ultimately led to a shared
Nobel Prize, no less). With an extremely narrow depletion region between the p and
n sides of the junction, carriers can tunnel from the conduction band of the n side to
the valence band of the p side (Fig. 1.5). For the special case of very highly-doped
n and p regions (so-called degenerate doping), the conduction band of the n side
is lower in energy than the valence band of the p side at zero bias (V D 0). As

Fig. 1.5 Band diagram of an
Esaki tunnel diode at
resonance. Current tunnels
from conduction to valence
band through a narrow
depletion region in a
highly-doped p–n junction.
Adapted from [25].
Reproduced with permission
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Fig. 1.6 Illustration of
voltage-driven negative
differential resistance (NDR),
referring to the red portion of
the current–voltage curve,
where dI=dV < 0. Another
form of NDR (current-driven)
is also possible, but will not
appear in the thesis
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the bias is increased from zero in this configuration, the window of allowed states
for tunneling becomes smaller due to the increasing energy of the conduction band
(and the lack of available states in the band gap). This causes the current to decrease
with increasing voltage for a small range of voltages, a phenomenon known as
negative differential resistance (NDR), where dI=dV < 0, as shown in Fig. 1.6.
The concept of NDR is intriguing given that current is generally a monotonically-
increasing function of voltage in conventional electronic devices. In practice, this
NDR behavior leads to a peak in the tunneling current with respect to voltage, a
type of resonant tunneling.

1.2.2 Double-Barrier Resonant Tunneling Diode

Double-barrier resonant tunneling is a familiar example of quantum phenomena
often taught in courses on quantum mechanics. In such examples, the exact solution
of double-barrier tunneling in one dimension is used to show that perfect tunneling
transmission can occur for certain energies coincident with states in the central
quantum well. A double-barrier resonant tunneling diode (RTD) is an electronic
device based on this mechanism that produces NDR in its tunneling characteristic
due to the non-linear transmission. In this case, reduced dimensionality in a central
quantum well region is employed to discretize the available states such that the
resulting spectrum in the quantum well possesses a single relevant band. The
quantum well is sandwiched by tunneling barriers on either side, with source and
drain electrodes on the exterior faces of the tunneling barriers (Fig. 1.7) [25]. A bias
is applied across the source and drain electrodes, causing modulation of the bands
in the electrodes, as well as in the quantum well region. For one bias voltage in
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Fig. 1.7 Band diagram of a double-barrier resonant tunneling diode (RTD) at resonance. A
quantum well is sandwiched between two tunneling barriers with electrodes on the exterior faces.
Resonant tunneling occurs for the bias voltage which causes energetic coincidence of the confined
state in the quantum well with states in the electrode regions. Adapted from [25]. Reproduced with
permission

particular, the energy of the available band in the quantum well will coincide with a
matching bands in the electrodes, causing a peak in the transmission coefficient and
subsequent resonant tunneling through the two barriers, from source to drain.

1.2.3 Lateral Momentum Conservation in Two Dimensions

Along the lines of using reduced dimensionality to produce resonant quantum
effects, moving to two dimensions can provide many opportunities for resonant
behavior. One important mechanism that forms a central component of the thesis is
resonant tunneling between two separate two-dimensional electron gases (2DEGs)
due to lateral momentum (or wavevector) conservation. The first proposals for
this phenomenon were devised in the context of quasi-2DEGs in double-quantum-
well structures [26–28]. In such a structure, the states of each quantum well
are confined to a quasi-two-dimensional volume, causing each band to have
well-defined momentum in the lateral directions, but decaying character in the
out-of-plane direction (Fig. 1.9). A bias is applied across the two quantum wells,
leading to tunneling from one 2DEG to the other. For one particular voltage bias,
the bands of each 2DEG will be in complete alignment in momentum space, as in
Fig. 1.8b; this is the resonant tunneling condition. At other biases, the bands will
not overlap, as in Fig. 1.8a, or at least the lines of intersection will be confined to a
much smaller number of states, leading to reduced tunneling currents at these other
voltages. This manifests as NDR in the tunneling current, similar to the Esaki diode
and RTD mechanisms mentioned previously, however, in this case the underlying
mechanism responsible is the strict requirement of lateral wavevector-conservation
in addition to the usual energy conservation (for elastic transitions) between the
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Fig. 1.8 Parabolic bands of
neighboring quantum wells in
momentum space with an
applied bias (a) off-resonance
and (b) on-resonance, leading
to negative differential
resistance due to requirement
of lateral momentum
conservation
(kk-conservation). Reprinted
from [26], with the
permission of AIP Publishing

Fig. 1.9 Schematic of a 2D–2D tunneling transistor based on a conventional semiconductor
heterostructure. Tunneling resonance is provided by the reduced number of states with matching
energy and lateral momentum on either side of the tunneling barrier, similar to the graphene–
insulator–graphene tunnel junctions presented in Chaps. 7 and 8. Reprinted from [26], with the
permission of AIP Publishing

tunneling states. Two key properties that enable momentum-conservation to play a
role in the transmission are as follows:

1. There must be a greatly reduced number of states with dispersion in the tunneling
direction (the 2D requirement), otherwise there will be additional bands which
allow tunneling at multiple voltage biases, or even for a voltage continuum, as in
3D crystals.

2. The wavefunctions of each quantum well must be coherent with sufficient lateral
extent so as to have well-defined lateral momentum. Localized wavefunctions
are diffuse in momentum space and therefore will have significant overlap with
states in the opposing electrode at many biases.
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These points will arise again in Chaps. 6–8 regarding a similar mechanism in 2D
materials, and therefore further details will be reserved for those sections.

As a final point to differentiate 2D–2D resonant tunneling from Esaki and RTD
tunneling, due to the geometry of a 2D–2D device, with the tunneling area exposed
on both sides of the junction, electrostatic gates may be easily added above and
below the electrodes for modulating the tunneling with a third and fourth external
voltage bias (Fig. 1.9). Gate modulation of this sort enables the device to operate
as a transistor (a three- or four-terminal device) as opposed to a simple diode (a
two-terminal device). Transistors are highly sought-after components for myriad
electronics applications involving switching, logic, and memory, and the ability to
regulate NDR as a transistor is very compelling from a circuit perspective.

1.2.4 Many-Body Effects and Excitonic Condensates

I will emphasize at this point that the tunneling concepts presented in this thesis
deal with single-particle effects, that is, tunneling between single-particle states
using physics derived from Bloch band theory and its associated machinery. There
are, of course, other possible many-body effects that could play a role in interlayer
tunneling between 2D crystals. It is quite likely that such effects, however, play
a secondary role in tunneling transport observed in the standard conditions of
electronic components (i.e., at room temperature and above). There is, however, one
proposal for interesting many-body tunneling in a heterostructure that is functionally
equivalent to the graphene–insulator–graphene tunnel junction presented in the
thesis (see, for example, Sect. 6.2.2). This proposed device also involves interlayer
tunneling between graphene sheets separated by a thin insulating barrier, however
the underlying mechanism for tunneling is based on electron–hole (e�–hC) pairing
across the tunnel barrier, an excitonic state that behaves as a collection of bosons due
to the integral total spin of each e�–hC pair. Whereas individual electrons and holes
are fermions, and therefore cannot occupy the same state simultaneously (the Pauli
exclusion principle), the excitonic boson gas of e�–hC pairs may condense below
a certain critical temperature (given that there are also roughly equal populations
of electrons on one side of the junction and holes on the other), forming a so-
called Bose-Einstein condensate. In this configuration, the condensate can allow
rapid tunneling through the junction due to the highly correlated state of the carriers
[29, 30]. However, with modulation in the bias the condensate is expected to degrade
(due to charge imbalance), and thus the tunneling current will reduce, leading to
NDR.

Though these effects are undeniably intriguing and worthy of pursuit, presently
such effects have not been observed in 2D devices. On the other hand, the
predictions of resonant tunneling due to single-particle effects in graphene (Refs. [2,
31, 32]) and bilayer graphene (Refs. [33, 34]) as presented in the thesis have been
observed in the time since this work began. Therefore, it is single-particle effects
that will be the focus of the thesis, and beyond this section many-body effects will
not be considered further.
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Chapter 2
Experimental Methods

With the goal of studying 2D materials and layered heterostructures composed of
2D materials, the primary experimental tool I employ is the low-energy electron
microscope (LEEM). In the following sections, I describe the apparatus and various
modes of operation as they pertain to investigations of 2D materials. Whereas the
imaging and diffraction modes described in Sects. 2.1.1 and 2.1.2 are relatively
commonplace amongst users of LEEM, the spectroscopic techniques introduced in
Sects. 2.1.3 and 2.2 are less commonly known, and a portion of the work described
in this thesis involves advancing these methods as needed for applications to 2D
surface science. The development of low-energy electron reflectivity as a method
for probing 2D materials is a high priority in our group, and as such it is also an
area in which we have collectively attained a level of expertise. There are not many
LEEM systems, globally; partly due to the high cost of commercial systems (and
the even greater challenge of designing and building one), and partly due to lack
of awareness regarding the advantages of LEEM for studying 2D materials, not to
mention surfaces in general. Therefore it is an additional goal of this thesis, in a
small way, to advertise the qualities of LEEM for studying 2D heterostructures to
the broader community.

2.1 Low-Energy Electron Microscopy and Reflectivity

A low-energy electron microscope (LEEM) uses a broad beam of low-energy
electrons to image surfaces by capturing the elastically backscattered electrons
with a series of electron lenses [1]. Electrons are emitted from an electron gun
cathode and accelerated through a large negative potential before entering a column
of electromagnetic focusing lenses and deflectors, the illumination column (see
Fig. 2.1). The beam is curved through a magnetic beam separator before being
decelerated to low-energies between the objective lens and sample surface. The

© Springer International Publishing AG 2017
S.C. de la Barrera, Layered Two-Dimensional Heterostructures and Their Tunneling
Characteristics, Springer Theses, https://doi.org/10.1007/978-3-319-69257-9_2

17

https://doi.org/10.1007/978-3-319-69257-9_2


18 2 Experimental Methods

electron gun

Fig. 2.1 Diagram of a low-energy electron microscope with 60ı beam deflection design. In
contrast to other common electron microscopes, there is a magnetic prism array separating the
illumination and imaging electron beams. Electrons are accelerated from the gun cathode through
a high-voltage potential and decelerated just before reflecting from the sample surface, with a
small variable sample bias applied on top of the decelerating voltage. Reflected and diffracted
electrons pass back through the beam separator and are refocused into a magnified image on a
phosphor screen and the end of the imaging column. An illumination aperture may be used to
reduce the illuminated region on the same surface (typically utilized for selected-area diffraction
mode). Diffraction patterns occur in the back focal plane of the objective lens, where a contrast
aperture may be inserted for diffraction-contrast and dark-field imaging. With the electron beam
turned off, a UV source may be used for photoemission electron microscopy

reflected electrons pass back through the objective lens and are curved away from
the incident beam by the magnetic beam separator before entering the imaging
column, which uses a second set of lenses and deflectors to project the magnified
image onto a microchannel plate and phosphor screen. Depending on the lens
currents, several modes of operation are possible.

2.1.1 Bright-Field and Dark-Field Imaging

For crystalline samples, in addition to 180ı-backscattering, some of the electrons
incident on the sample surface are diffracted. In other words, some electrons scatter
from a reciprocal lattice vector of the periodic potential on the surface and thus
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Fig. 2.2 (a) Specular bright-field LEEM image of exfoliated WSe2 flake on epitaxial graphene
on SiC. Field-of-view is approximately 50 µm. (b) Dark-field (diffraction-contrast) image formed
by placing a contrast aperture on the .01/-spot of the graphene diffraction pattern. Bright regions
correspond to graphene whereas the dark shadow is covered by WSe2. (c) Dark-field image formed
by placing a contrast aperture on the .01/-spot of WSe2, with the WSe2 showing as a bright
patch in a dark background of graphene. (d) Diffraction asymmetry image produced by taking the
normalized difference of dark-field intensities A D .IGr � IWSe2

/
ı
.IGr C IWSe2

/ . (e) Diffraction
pattern of the regions shown in panels (a)–(d). Encircled spots indicate the positions of the contrast
aperture used to generate the images in panels (a)–(c), as labeled

obtain a finite in-plane momentum component. In imaging mode, typically only the
normally-reflected electrons are used to form the final image, as in Fig. 2.2a. To
achieve this, a metal contrast aperture is centered on the specular .00/-spot of the
diffraction pattern that forms in the back focal plane of the objective lens, as in circle
“a” in Fig. 2.2e. This aperture blocks electrons with in-plane momentum, allowing
the final image to be formed using only the normally-reflected electrons.

Contrast in bright-field mode typically comes from differences in the interactions
between low-energy electrons and the top few atomic layers on the sample surface.
These interactions can in general be quite complex, or at least material dependent.
Primarily, contrast will arise due to the partial absorption of incident electrons
into the sample due to the presence of surface states and/or inelastic processes. In
addition to providing spatial contrast across sample surfaces, these interactions often
have a well-defined energy dependence that can provide a great deal of information,
as discussed in Sect. 2.1.3 and utilized in Chaps. 3 and 4.

By centering the contrast aperture on a diffracted spot, it is possible to form
an image using only electrons diffracted in the direction of the selected spot.
This is called dark-field or diffraction-contrast imaging, and can be useful for
discerning between surface features with differing crystal structures or orientations.
For example, the diffraction pattern in Fig. 2.2e is the result of separate graphene
and WSe2 lattices in the illuminated region. By moving the contrast aperture
to each encircled region and capturing a real-space image, separate bright-field
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and dark-field images are recorded, as shown in panels Fig. 2.2a–c. The dark-
field images show only electrons which pass through the particular spot that is
centered in the aperture, and thus are dark wherever electrons are diffracted in a
different direction. By taking the normalized difference of two dark-field images,
A D .IGr � IWSe2

/
ı
.IGr C IWSe2

/ , a diffraction asymmetry image is formed, as
in Fig. 2.2d, which eliminates contrast that does not originate from well-defined
diffraction.

2.1.2 Electron Diffraction in a LEEM

For surfaces with sufficient periodicity, a portion of the incident electrons will obtain
an in-plane momentum component after scattering, traveling along a diffracted
trajectory toward the objective lens. The set of diffracted beams from a given surface
is called the diffraction pattern, and appears in the back focal plane (the diffraction
plane) of the objective lens. By adjusting the lens currents in the imaging column,
the image in the back focal plane of the objective lens can be projected onto the
imaging plane of the microscope in lieu of the real-space image of the surface.
The result is that the diffracted electron beams can be imaged directly, as shown in
Fig. 2.2e, The ability to switch between real-space and momentum-space imaging
in LEEM is similar to transmission and diffraction modes in a transmission electron
microscope. Of course, these are backscattered electrons instead of transmitted ones,
and the energies used for diffraction in a LEEM system are typically between 30 and
500 eV, and hence the technique is called low-energy electron diffraction (LEED).

There are, in fact, dedicated LEED systems which do not require the complex
arrangement of electron lenses provided in a LEEM, but there are several advantages
to measuring diffraction patterns in a LEEM as opposed to a standalone LEED
system. The primary advantage of the LEEM optics is that they permit the incident
beam to be focused to a small region of the surface through the use of an illumination
aperture (see Fig. 2.1) in imaging mode. By this method, a specific region of the
surface can be selected for diffraction imaging, so as to obtain a local diffraction
pattern, so-called selected-area diffraction or µLEED.

The latter technique enables micrometer-scale analysis of crystallinity, crystal
orientation, and even atomic structure in some cases (through indirect methods).
By relocating the illuminated region and successively capturing µLEED patterns it
is possible to compare lateral differences in crystal structure. However, for layered
2D structures in particular, the finite (albeit short) depth of electron penetration into
the surface allows direct comparison of vertically stacked crystals, for example to
measure crystallographic misorientation (rotation) or differences in lattice constant.
With these capabilities at our disposal, µLEED provides excellent complementary
information for surface studies of 2D materials and heterostructures in LEEM.
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2.1.3 Spectroscopic Analysis with Low-Energy
Electron Reflectivity

Low-energy electrons, that is, electrons with kinetic energy E < 500 eV for
the purposes of this thesis, interact with surfaces through elastic, quasielastic,
and inelastic channels [1]. Especially at the lowest energies, E < 10 eV, elastic
backscattering and inelastic scattering dominate over forward scattering processes.
Unlike electrons with higher energies, these interactions cannot be described by
physics assuming weak inelastic scattering or the first Born approximation of
general scattering theory. The influence of neighboring atoms on atomic potentials is
relevant for electrons with energies less than �100 eV, and as the incident electron
energy decreases further, the effects of charge–charge (correlation) and spin–spin
(exchange) interactions become increasingly important [2]. These effects are the
relevant ones for the critical range of energies used for LEEM imaging, between 0
and 20 eV.

In crystalline solids, the periodic lattice of atoms produces a set of energy bands
that depend on crystal wavevector, En.k/, the band structure. Forbidden ranges
of energy without states, band gaps, do not in principle admit incident electrons,
and should therefore reflect all electrons of energy within the band gap. However,
quasielastic electron–phonon scattering can provide a change in momentum with
negligible change in energy, allowing the scattered electrons to find allowed states
in the solid [1]. Additionally, the finite penetration depth of incident electrons, even
with energies in a band gap, opens up the possibility of inelastic processes that
further reduce elastic backscattering. For these reasons, total reflection of incident
low-energy electrons is not typically observed. Incident low-energy electrons with
energy and wavevector matching allowed states on the surface may be transmitted
into the solid, leading to reduced reflectivity. As a result of these effects, reflectivity
of low-energy electrons from crystalline surfaces in general depends on details of
the band structure, lattice excitations, and available inelastic processes.

Electron beam energy in LEEM is modulated by a small bias V applied between
the electron gun cathode and the sample surface (see Fig. 2.3). In our system, an
Elmitec LEEM III, electrons are first produced by thermionic emission from a LaB6
crystal cathode which is held at a high voltage VHV D �20 kV with respect to a
nearby anode cylinder. The thermionic electrons are accelerated through this large
potential in order to allow efficient lensing by a series of electromagnetic lenses that
make up the illumination column of the microscope. To prevent backstreaming of
electrons through the various electron-optical stages, the entire system is operated
at ultra-high vacuum (UHV), with pressures in the beam column typically less
than 1 � 10�10 Torr. Just before the electrons reach the surface of the sample, they
are decelerated to low energies by a 104 V/mm field emanating from the objective
(cathode) lens to the sample surface. The small sample voltage V is floated on top
of the high-voltage potential and allows the beam energy to be tuned around the
vacuum level of the sample surface. Specifically, the sample and gun cathode Fermi
levels may be written as
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Fig. 2.3 Electrostatic potential model of a low-energy electron microscope, relating the high-
voltage bias VHV and sample bias V to the Fermi levels �s, �c and vacuum levels Es

vac, Ec
vac

of the sample surface and electron gun cathode, respectively. Work functions of the sample and
cathode are denoted Ws and Wc. A simplified schematic of the sample, objective lens, gun anode
and cathode along the illumination beam path is shown above as it relates to the potentials below,
ignoring the effects of the electron lenses and beam deflectors. Neither the spatial nor energy range
is shown to scale

�s D e.VHV � V/ (2.1a)

�c D eVHV; (2.1b)

respectively. The vacuum level, the lowest unbound (resting) free-electron level at
each location, is related to the Fermi level in the usual way,

Es
vac D �s C Ws (2.2a)

Ec
vac D �c C Wc; (2.2b)

for the sample surface and gun cathode, respectively, with work functions Ws, Wc

of the sample and cathode crystal. Note that in general the work function is a local
quantity, and therefore the vacuum level is also defined locally on the surface of a
solid, even in Fermi equilibrium. This point is discussed and utilized in Chap. 4 as
it relates to LEEM measurements.

From Eqs. (2.1) it is clear that the sample bias is proportional to the difference in
Fermi levels, eV D �c � �s. Using this and the difference of Eqs. (2.2), we find

Ec
vac � Es

vac D eV �	W; (2.3)
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where we have defined the difference in sample and cathode work functions,

	W � Ws � Wc: (2.4)

Due to the thermionic nature of emitted electrons from the gun cathode, the electron
beam energy is primarily concentrated near the vacuum level of the cathode, Ec

vac.
Details of this energy distribution will be reserved for Chap. 4. Here, it is sufficient
to consider the emitted electrons having energy equal to Ec

vac, and therefore arriving
at the sample surface with kinetic energy equal to the difference in vacuum levels
given in Eq. (2.3), and as shown in Fig. 2.3. Therefore, the kinetic energy of incident
electrons is indeed modulated by the sample bias, V , but shifted by 	W=e, an
important distinction that is relevant for any comparison of measured reflectivity
to energy bands or quantities derived from energy bands. Finally, for small positive
biases, 0–20 V, LEEM electrons are generally probing unoccupied states that exist
slightly above the vacuum level of the sample surface. These states are “low-energy”
insofar as they correspond to slow free electrons, i.e. with low kinetic energy.
However, from the perspective of states in the solid itself, these states are typically
several electronvolts above the energy range of electronic transport phenomena and
would therefore be considered “high-energy” states of the solid.

To study these states, spectroscopic low-energy electron reflectivity (or simply
reflectivity, in this thesis) is utilized. With a clean sample surface in focus, a series of
images is captured while sweeping the sample bias, typically from a small negative
bias, for example �5 V (slightly below the sample vacuum level, depending on work
functions), up to 15 or 20 V. The sample voltage is swept in 0:1 V increments,
resulting in �200–250 images over the course of an hour or so (depending on
beam intensity and desired signal-to-noise). This procedure is performed with a
contrast aperture (one of three sizes, for choosing the radius of allowed diffraction
trajectories) in place over the specular .00/-spot in the diffraction plane.

The resulting series of images allows a reflectivity spectrum, that is, reflected
intensity as a function of sample bias I.V/, to be extracted from each pixel in
the image set during post-processing, as shown in Figs. 2.7 and 3.1. In practice,
reflectivity from groups of neighboring pixels are summed or averaged together
to improve signal-to-noise and to relate extended regions with similar reflectivity
signature. Low-energy electron reflectivity is also sometimes referred to by other
groups as LEEM-I.V/ since I.V/ curves are extracted from LEEM images directly,
and to contrast with another method historically called LEED-I.V/, which involves
extracting diffracted intensity from a series of LEED patterns with varying sample
bias. The latter technique may be performed in a LEEM, but is also possible in a
conventional LEED system which has a vastly simplified design and no imaging
capability.

The process of extracting spectroscopic information by varying the cathode–
sample bias in LEEM is analogous to sweeping tip–sample bias in scanning
tunneling spectroscopy (STS), a well-known technique for studying electronic states
on surfaces [3–5]. As a point of distinction, in the former case the states that are
spectroscopically probed are unoccupied ones above the vacuum level, whereas in
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the latter case the states are near the Fermi level and may be occupied or unoccupied
depending on the direction of tunneling current. In terms in experimental execution,
the greatest difference between the two methods is that low-energy electron
reflectivity spectra are obtained for an entire illuminated region all at once, allowing
arbitrary point-to-point comparison during data analysis. For equivalent analysis
using scanning tunneling microscopy (STM), an STS spectrum must be individually
recorded for each location in a rastered grid, requiring large data collection times
and high stability of surfaces and experimental conditions. This final point is a great
advantage for LEEM-based spectroscopy methods, which allows rapid and routine
surface studies that would otherwise be impractical or impossible with scanning
probe methods.

2.2 Relative Work-Function Extraction from Reflectivity

As a final point related to spectroscopic techniques enabled by low-energy electron
reflectivity, in this section an additional method is introduced that utilizes the very
low energy part of the spectrum to measure spatial variations in surface electrostatic
potentials. In the scope of the thesis, these methods were developed to allow
comparison of work functions between the constituent layers of 2D heterostructures.
Highlights of these works appear in Sects. 5.1 and 4.3, but the method is generally
applicable to electron reflectivity analysis, and is therefore employed in most
cases where reflectivity is concerned in the thesis (typically, to allow plotting of
reflectivity curves versus band structure, as opposed to sample bias voltage). The
development of this method as laid out in this section has appeared, in part, in
published form in Ref. [6], Devashish P. Gopalan, Patrick C. Mende, Sergio C.
de la Barrera, Shonali Dhingra, Jun Li, Kehao Zhang, Nicholas A. Simonson,
Joshua A. Robinson, Ning Lu, Qingxiao Wang, Moon J. Kim, Brian D’Urso, and
Randall M. Feenstra. Formation of hexagonal boron nitride on graphene-covered
copper surfaces. J. Mater. Res., 31:945–958, April 2016. doi:10.1557/jmr.2016.82,
reproduced with permission.

The measurement is performed as a function of the sample voltage, V , which is
the potential difference between the sample and cathode emitter,

eV D �c � �s; (2.5)

where the Fermi energies of the sample and cathode emitter are denoted by �s and
�c, respectively, as defined in Eqs. (2.1). As discussed in Sect. 2.1.3, the sample
bias is also related to the vacuum levels Es

vac, Ec
vac and work functions Ws, Wc of the

sample and cathode as follows

eV D 	W C Ec
vac � Es

vac; (2.6)

where the difference in work functions is defined as	W � Ws �Wc, as in Eq. (2.4).
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Fig. 2.4 (a) and (b) Typical reflectivity spectra (in this case, from graphene on Cu grown by
atmospheric pressure chemical vapor deposition), with (a) displaying a sharp transition to unit
reflectivity (near 1:5 V sample voltage) and (b) showing a more gradual transition. (c) and (d)
Expanded views of the transition regions from panels (a) and (b), respectively. Black circles show a
fit function, with the arrows indicating the onset voltages derived from the fit. The two components
of the fits, for each spectrum, are indicated by the dotted lines

For a relatively ideal spectrum such as in Fig. 2.4a, we see, as a function of
decreasing voltage, a sharp onset (near 1:5 V) at which the reflectivity rises to unity.
This signifies the transition to mirror mode of the LEEM [1, 7]; as pictured in
Fig. 2.5a, for sample voltage lower than this onset, the incident electrons do not have
sufficient energy to reach the surface. Rather, they are reflected by the electric field
(typically 104 V/mm) that extends out from the surface to the objective lens of the
electron optics. This field is shown schematically in the context of the illumination
column of a LEEM in Fig. 2.3, whereas a close-up of the field near the sample
surface is represented in Fig. 2.5. For a sample voltage equal to the onset voltage,
the vacuum levels of the sample and cathode emitter are aligned. Denoting the onset
voltage by V0, we have

eV0 D 	W: (2.7)
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Fig. 2.5 (a) and (b) Schematic energy diagrams of the distribution N.E/ of electrons incident on
the surface of a sample in LEEM. In (a), the electrons are reflected by the field extending out from
the surface, whereas in (b) the electrons have sufficient energy to reach the surface, where they are
partially reflected and partially absorbed. For a schematic showing these potentials in the context
of the LEEM, see Fig. 2.3

For voltages greater than the onset, all electrons are reflected from the sample
surface or absorbed into the sample, as pictured in Fig. 2.5b.

A convenient way to plot reflectivity spectra is in terms of the energy of a sample
state, as probed by the incident electrons. Electrons emitted from the thermionic
emitter have a well-known energy distribution,

N."/ D "

�2c
exp

�
� "

�c

�
; (2.8)

with �c D kTc where k is Boltzmann’s constant, Tc is the temperature of the cathode
emitter, and with " being the electron energy relative to Ec

vac [8]. This distribution
is peaked at " D �c, so that the incident electrons have peak energy of �c C Ec

vac.
Due to this shift in the peak energy from Ec

vac, the largest contribution to measured
reflectivity is similarly shifted. This energy corresponds to the energy of a probed
sample state, which we denote by E. Therefore, for plotting the spectra on an energy
scale we employ

E � Es
vac D �c C Ec

vac � Es
vac (2.9a)

D �c C e.V � V0/; (2.9b)

where the second line follows from the first by using Eqs. (2.6) and (2.7). In our
labeling of the spectral plots, we drop the superscript “s” from Es

vac, with E � Evac

understood to refer to the energy of a sample state relative to the vacuum level of
the sample.
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To obtain values for �c and V0 from the data, we employ a least-squares fitting
procedure. Consider the situation of Fig. 2.5a with V < V0; some electrons of the
incident distribution will be reflected by the field. The number of those mirror-
reflected electrons is given by

fm.V/ D
Z "1

0

�
"

�2c
exp

�
� "

�c

��
d" ; (2.10)

where the upper limit of integration is "1 D Es
vac � Ec

vac D �e.V � V0/. Evaluating
the integral, we find

fm.V/ D 1 �
�
1 � V � V0

�

�
exp

�
V � V0
�

�
; (2.11)

where � � �c=e. The number of electrons reflected from the sample is given by

fs.V/ D Œ1 � fm.V/
r.E/; (2.12)

where r.E/ is the reflectivity of the electrons at an energy given by Eq. (2.9b). Now
considering the situation of Fig. 2.5b with V > V0, we have no electrons being
reflected by the field, fm.V/ D 0, and the number of electrons being reflected from
the sample surface is given simply by fs.V/ D r.E/. For fitting the observed spectra,
we do not assume that the data are necessarily normalized to unit reflectivity (for
example, at large, negative sample voltages). Hence, for the field-reflected electrons,
we employ a fit function of the form

gm.V/ D
(

a0
�
1 � �

1 � V�V0
�

�
exp

�V�V0
�

�	
; V � V0

0; V > V0;
(2.13)

where a0 is a fit parameter. For the electrons reflected from the sample surface,
we must assume some form for the reflectivity r.E/. We expand this function as a
second-degree polynomial about an energy (relative to Es

vac) of e.V � V0/, yielding
the fit function

gs.V/ D
(

Gs
�
1 � V�V0

�

�
exp

�V�V0
�

�
; V � V0

Gs; V > V0;
(2.14)

where Gs D b0 C b1.V � V0/ C b2.V � V0/2, with b0, b1, and b2 all being fit
parameters.

Thus, for a relatively ideal spectrum such as that of Fig. 2.4a, we fit the data to
gm.V/C gs.V/, with the fit employing the four linear parameters a0, b0, b1, and b2
along with the two nonlinear parameters V0 and � . The result is shown in Fig. 2.4c,
with best-fit values of V0 D 1:385 ˙ 0:004 V and � D 0:121 ˙ 0:003 V. We obtain
a very good fit for a voltage window extending over ˙1 V or more on either side of
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Fig. 2.6 Schematic diagram of deflected beam trajectories near a sample surface as observed in
mirror-mode, near the onset voltage V0. (a) Beam deflection due to lateral fields at the junction of
two regions with differing work function. The resulting variation in electrostatic conditions near the
surface deflect incident and reflected electrons toward the region of lower work function. (b) Beam
deflection due to a step height change on a sample surface. In this case, lateral fields are caused by
curvature of the equipotential surface as it conforms to the sharp difference in topography

the onset, for spectra such as this, yielding a relative work function	W D eV0 with
less than 10 meV uncertainty. The value obtained here for the width of the electron
distribution, 0:12 eV, is typical for a data set such as shown in Fig. 2.4, acquired
with relatively low current through the electron emitter. For higher currents (for
example, for images of smaller surface areas), we obtain widths as large as 0:3 eV
or more due to the higher temperature of the cathode emitter element (full-width
at half-maximum is 2:45� greater [8]), consistent with prior reports [9]. We repeat
this fitting procedure for a few relatively ideal spectra on the surface, determining
a best-fit value for � that characterizes all the spectra. This value is then kept fixed
for all subsequent fits to that data set.

Now let us consider a spectrum such as that of Fig. 2.4b, which displays a much
slower approach of the reflectivity to unity value as the voltage is decreased. This
type of behavior is a signature of lateral fields on the surface of the sample, arising
from a work function difference between neighboring surface areas [7]. Electrons
will, in general, be deflected from an area of high work function toward an area
of lower work function at Fermi equilibrium, as shown in Fig. 2.6a. Hence, in the
LEEM images of areas near a transition from high to low work function, the high
work function area will appear dark and the low work function area will appear
light, as in Fig. 2.7a. This is clearly evident in mirror-mode imaging of surfaces,
that is, for sample voltages V < V0, although it may also affect the image contrast
at voltages V > V0. Of course, we would still like to quantitatively obtain the onset
voltage values in such cases from some sort of fit.

Let us consider the situation when electrons are swept away from the spectrum,
as for the spectrum of Fig. 2.4b, focusing on the field-reflected electrons in
particular. We hypothesize some sort of “loss function” for those missing electrons,
which multiplies the gm.V/ reflectivity that occurs in the absence of the loss.



2.2 Relative Work-Function Extraction from Reflectivity 29

–2 –1 0 1 2 3

0.4

0.6

0.8

1.0

1.2 A

B

C

Sample Voltage (V)
E

le
c
tr

o
n
 R

e
fl
e
c
ti
v
it
y

Fig. 2.7 (a) Image distortion due to beam deflection by surface potential variations in mirror-
mode (close to V0 sample bias). In this case, the higher work function of a WSe2 island (dark
triangle) compared to the surrounding graphene (light background area) causes electrons to be
deflected toward the graphene, as in Fig. 2.6a. This effect manifests as neighboring bright and dark
regions at the junction of the two regions of differing work function. (b) Reflectivity signature
of beam deflection. Reflected intensity approaches unity for large negative voltages, with a flat
approach in typical curves, as in curve B, taken from a region without potential variation. On the
low-work function side of a junction (curve A), reflectivity is augmented over unity by the extra
electrons deflected from the other side of the junction (curve C). These effects are strongest near
the mirror-mode onset. Vertical dashed line indicates sample bias used to capture image in panel (a)

Experimentally, it appears that the loss is most pronounced for voltages near the
onset voltage (which is not surprising since it is for these voltages that the electrons
approach nearest to the surface), and its influence decreases gradually as the voltage
(energy) is reduced. We assume a form for the loss function as a second-degree
polynomial, expanded in terms of .V � V0/. Thus, for these relatively non-ideal
spectra, we fit the mirror-mode electrons to a function of the form

Qgm.V/ D
(

Gm
�
1 � �

1 � V�V0
�

�
exp

�V�V0
�

�	
; V � V0

Gm; V > V0;
(2.15)

where Gm D a0 C a1.V � V0/ C a2.V � V0/2, with a0, a1, and a2 all being fit
parameters. For the case of sample-reflected electrons, we can still use Eq. (2.14) for
the fit, since the effect of the lateral fields on the surface in modifying the reflectivity
will simply be absorbed in a redefinition of the b0, b1, and b2 parameters. Figure 2.4d
shows an example of this sort of fit to a non-ideal spectrum, utilizing Qgm.V/Cgs.V/,
and with the fit now having six linear parameters a0, a1, a2, b0, b1, and b2, along with
one nonlinear parameter, V0. Again, good fits are obtained over a voltage range of
˙1 V or more on either side of the onset. The best-fit value for 	W � eV0 obtained
in this case is 1:53 ˙ 0:05 eV. The error is about 10� larger than for fits of more
ideal spectra.
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Chapter 3
Thickness Characterization of Tungsten
Diselenide Using Electron Reflectivity
Oscillations

In this work, low-energy electron microscopy is employed to probe structural as
well as electronic information in few-layer WSe2 on epitaxial graphene on SiC.
The emergence of unoccupied states in the WSe2–graphene heterostructures is
studied using spectroscopic low-energy electron reflectivity. Reflectivity minima
corresponding to specific WSe2 states that are localized between the monolayers of
each vertical heterostructure are shown to reveal the number of layers for each point
on the surface. A theory for the origin of these states is developed and utilized to
explain the experimentally observed featured in the WSe2 electron reflectivity. This
method allows for unambiguous counting of WSe2 layers, and furthermore may be
applied to other 2D transition metal dichalcogenide materials. The work described
in this chapter appears in published form in Ref. [1]. Reproduced from Sergio C.
de la Barrera, Yu-Chuan Lin, Sarah M. Eichfeld, Joshua A. Robinson, Qin Gao,
Michael Widom, and Randall M. Feenstra. Thickness characterization of atomically
thin WSe2 on epitaxial graphene by low-energy electron reflectivity oscillations. J.
Vac. Sci. Technol. B, 34 (4):04J106, July 2016. doi:10.1116/1.4954642, with the
permission of the American Vacuum Society.

3.1 Introduction

Low-energy electron microscopy (LEEM) is a powerful characterization tool for
two-dimensional (2D) materials, since it provides both structural and electronic
information, the latter dealing with unoccupied states above the surface vacuum
level. In such a system, a beam of electrons with energies between 0 and 20 eV
is reflected from a sample surface at normal incidence. The short penetration and
escape depth of incident and reflected electrons with such low energy enables sensi-
tivity to only the top-few atomic layers. For these reasons, LEEM is highly suited to
studies of 2D materials and 2D heterostructures. There have been numerous LEEM
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studies of semimetallic graphene [2–7] and insulating hexagonal boron nitride [8, 9],
but the expanding class of 2D semiconductors remains to be investigated in detail
[10–12].

Here, we study atomically thin films of WSe2, a semiconducting transition
metal dichalcogenide (TMD), that are prepared by metal-organic chemical vapor
deposition (MOCVD) on epitaxial graphene on SiC. Epitaxial graphene (EG)
provides an atomically-flat substrate for TMD growth and carries away excess
charge during LEEM. Low-energy electron diffraction (LEED) patterns taken from
the surface indicate that the WSe2 crystals prepared by this method are crystalline
and epitaxially aligned to the underlying graphene. The preference for well-defined
rotational alignment with graphene is promising for future electronic applications
that require integration of 2D semiconducting and metallic components.

By measuring the reflected intensity of electrons as a function of effective beam
energy, it is possible to extract spectroscopic information pertaining to electronic
states at each point in the surface. These spectra, called low-energy electron
reflectivity (LEER), have been shown to allow unambiguous counting of the number
of stacked monolayers of few-layer graphene and subsequent thickness mapping
based on automated analysis methods [2, 7]. The layer-counting method relies on
the presence of special states which are localized between the atomic layers of
graphene, and on strong coupling between those states and the electrons involved in
LEEM imaging. Since WSe2 is another layered material, it is a natural question
to ask whether or not similar states exist between the quasi-2D layers of few-
layer WSe2 and can be counted by analyzing electron reflectivity. We show that
by carefully considering features in the reflectivity of WSe2, it is indeed possible to
distinguish monolayer WSe2 on EG from regions with two layers or more.

3.2 Methods

In this study, epitaxial graphene (EG) formed on 6H-SiC is used as a template for
synthesis of atomically thin WSe2 crystals. A 1 cm2 piece of diced SiC is etched
in a 10 % H2/Ar mixture at 700 Torr and 1500 ıC for 30 min to remove surface
damage caused by wafer polishing. The SiC is subsequently annealed in a pure
Ar environment at 200 Torr and 1620 ıC for 10 min [13]. During the entire process
the SiC substrates are inside a graphite crucible, which reduces the sublimation
rate of Si at high temperatures and hence improves the uniformity of graphene
morphology. WSe2 synthesis is carried out on EG substrates with conditions as
previously reported by Eichfeld et al. [14], with the W and Se precursors in this
growth being W(CO)6 and H2Se, respectively.

Following WSe2 growth, samples are transferred to an Elmitec LEEM III for
characterization. The principal mode of the LEEM directs a broad, monochromatic
beam of electrons at the sample surface at normal incidence. The elastically reflected
electrons are filtered to allow only non-diffracted trajectories, and the remaining
electrons are refocused into an image of the surface using a series of electron lenses.
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Images are captured with a voltage bias applied between the sample surface and the
electron gun, which determines the effective energy of the incident electrons.

Computations are performed using the Vienna Ab-Initio Simulation Pack-
age (VASP), employing the projector-augmented wave method and the Perdew-
Burke-Ernzerhof generalized gradient approximation (PBE-GGA) to the exchange-
correlation functional [15–19], with a plane-wave energy cutoff of 500 eV. Low-
energy electron reflectivity (LEER) spectra of free-standing slabs of multilayer 2D
materials are computed using a method described previously [7, 20]. Inelastic effects
are included in the computations [21], employing an imaginary part of the potential,
Vi. Following the detailed analysis of Krasovksii and co-workers [22–24], in our
prior work we employed the phenomenological expression Vi D 0:4 eV C 0:06E
where E is the energy of a state relative to the vacuum level [21]. These values
for Vi were found to give a reasonably good correspondence between experiment
and theory, emphasizing experiments with energies of 0–10 eV. In the present
work we are especially concerned with reflectivity behavior in the upper part of
this range, near 10 eV (and also including energies up to 15 eV). We find that
use of the Vi D 0:4 eV C 0:06E expression produces reflectivities that are too
low (i.e., too much inelastic attenuation) near 10 eV. We therefore use a different
expression, Vi D 0:4 eV C 0:03E, for all spectra computed here (i.e., the value
of the slope parameter is reduced by a factor of 2). Comparing theoretical spectra
obtained with these two expressions for Vi, we feel that this new expression
might slightly underestimate inelastic effects near 10 eV (and above) in typical
2D materials that we examine. Nevertheless, this new expression provides a better
means of examining such features in the theory since, again, attenuation near 10 eV
is significantly reduced.

3.3 Experimental Results

Figure 3.1 shows LEEM images of the sample surface captured at a few sample
voltages, showing the strong dependence of image contrast on sample bias. This
dependence can be quantified by recording the reflected intensity of electrons as
a function of sample voltage for each pixel, in a series of images captured in a
voltage sweep. The resulting low-energy electron reflectivity (LEER) curves are
extracted from the images for specific points or regions of interest to provide
spectroscopic information about the surface. For example, the reflectivity curves
shown in Fig. 3.1e were extracted from the labeled points in Fig. 3.1d. The relevant
features in such spectra are reflectivity minima, which correspond to energies of
electronic surface states that couple with incident electrons, causing transmission
into the sample and thus reduced reflectivity at those energies.

The broad minimum in spectrum C of Fig. 3.1e near 4:0 V is associated with a
state that exists between monolayer graphene and the carbon-rich surface recon-
struction of the SiC below [2, 7], and therefore indicates the presence of monolayer
graphene in that region of the image. Curve D, which has two minima surrounding
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Fig. 3.1 (a)–(d) LEEM images showing a single region of few-layer WSe2 crystals on epitaxial
graphene on SiC for a few sample bias voltages, as indicated. (e) Reflected intensity of electrons
extracted from the four labeled points in (d) as a function of sample voltage for two thicknesses of
graphene and WSe2. Curves are shifted vertically for clarity and purposes of illustration. Vertical
dashed lines indicate the voltages used to capture the images in (a)–(d).
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Fig. 3.2 Atomic force microscope image of surface height, showing monolayer (1ML), bilayer
(2ML), and trilayer (3ML) regions of WSe2 on the epitaxial graphene surface

4:0 V and a local maximum in the middle, is similarly characteristic of bilayer
graphene. Curves A and B, however, originate from WSe2 regions, and yield a more
complex set of reflectivity features with slight variations between the two curves.
The largest differences in these two curves are the shape of the minimum near 6:1 V
and the presence of a single- or double-minimum around 11:6 V.

Atomic force microscope (AFM) scans of the surface reveal that the majority of
the WSe2 crystals are monolayer (1ML) and bilayer (2ML), with a few instances of
thicker island growth (Fig. 3.2). The height change between the top of a monolayer
crystal and the EG surface is approximately 0:65 nm, similar to other samples
prepared by the same method [14, 25]. Electron reflectivity from one of these
monolayer WSe2 crystals is shown in curve A of Fig. 3.3b, with a local minimum at
10 eV. We ascribe the occurrence of this minimum to a specific state which exists
in monolayer WSe2, and will be discussed in Sect. 3.4. Bilayer WSe2 triangles are
also observed in LEEM as well as AFM. The reflectivity from one of these triangles,
shown in curve B of Fig. 3.3b, exhibits two reflectivity minima surrounding a local
maximum at 10 eV. In this case the two minima can be understood to result from a
combination of two nearly-degenerate monolayer-WSe2 states, and thus this double-
minimum is a signature of bilayer WSe2.

To classify the crystals within the imaged region in Fig. 3.4a, we create a
colorized map based on the relevant reflectivity features. Colors are assigned based
on the total reflectivity of specific energy windows for each point on the surface, and
the result is a false-color spectroscopic image, weighted by the spectral components
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Fig. 3.3 (a) False-color
spectroscopic image of
MOCVD-grown WSe2 on
epitaxial graphene, for the
region shown in Fig. 3.4, with
colors assigned to the
reflected intensity of electrons
for specified energy windows.
(b) Reflected intensity of
electrons from labeled
locations in (a). Curves are
shifted vertically for clarity
and plotted versus energy,
rather than sample voltage,
for comparison with theory.
Colored energy ranges
indicate those used to
generate the spectroscopic
image
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within each energy window, as in Fig. 3.3a. From this spectroscopic image, we
clearly see the few-layer graphene areas, which primarily have states within the band
gap region of the WSe2 spectrum (between 1:5 and 3:5 eV, with high reflectivity)
and appear blue due to the assignment of red and green channels to energies in
this regime. Two WSe2 reflectivity minima near 4 and 7 eV, which evolve with the
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Fig. 3.4 (a) LEEM image of
WSe2–EG–SiC, showing
2 µm triangular WSe2 islands
on a bright background of
few-layer epitaxial graphene.
(b) Selected-area diffraction
from the circular region
labeled “b” in the LEEM
image shows six dark, outer
spots from the graphene
lattice, with six additional
groups of spots associated
with the WSe2 islands at a
smaller wavevector.
Surrounding the
non-diffracted .00/ spot,
there are six satellite spots
associated with the
6
p
3� 6

p
3–R30ı

reconstruction of the SiC. (c)
Diffraction from the bare
graphene region labeled “c”
in the LEEM image shows
only the six outer diffraction
spots and the 6

p
3 structure

also found in (b), labeled by
. 1=18 ; 1=18 /

number of layers, are assigned to green and blue channels, respectively, causing
color variations in the map based on the number of layers. For example, in this color
scheme, monolayer WSe2 appears yellow-hued, while bilayers appear rose-hued,
and trilayers appear turquoise (for a few small triangles in the center of pyramidal
structures). The map generated by this colorization scheme is further evidence of
the reproducibility of reflectivity analysis for determining WSe2 thickness.

In another mode of LEEM operation, diffraction patterns are acquired, allowing
direct analysis of the surface structure. We insert a small aperture to reduce the
illuminated area of the surface and collect a diffraction pattern for the local region,
so-called selected area diffraction or µLEED. Diffraction patterns from the encircled
regions in Fig. 3.4a show distinct sixfold diffraction spots from the graphene (larger
wavevector) and WSe2 (smaller wavevector), with six additional satellite spots
surrounding the central, specular .00/-spot, originating from the 6

p
3 � 6

p
3–

R30ı surface reconstruction, also known as the buffer layer of EG–SiC [3]. The
WSe2 spots form small groups azimuthally-centered on the diffraction pattern of
the underlying graphene. From the angular spread of these points, we find that
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the WSe2 preferentially forms rotationally aligned with the graphene lattice, within
˙2:3ı, for the given growth conditions. Interestingly, the macroscopic alignment of
the triangular crystal edges seen in the LEEM images are primarily oriented within
60ı of one another. This suggests that a specific edge termination is preferred by
this growth method, however, from LEEM it is not clear which type.

3.4 Theoretical Results

As first discussed by Hibino et al. [2, 26] and extensively analyzed in our prior work
[7, 20, 21, 27], the occurrence of minima in low-energy electron reflectivity spectra
is associated with interlayer states that occur between the 2D planes of van der Waals
(vdW) bonded materials. Such interlayer states arise from the image-potential states
that exist on either side of a single 2D layer [28, 29], i.e. a monolayer (ML) of carbon
for the case of graphene or ML-WSe2 for the case of bulk WSe2. When 2D MLs are
brought together to form a vdW-bonded bulk material, the image-potential states of
the respective layers combine to form a band of interlayer states [28]. The image-
potential states themselves have energies some 10’s of meV below the vacuum level,
but when they combine to form the interlayer states then those states end up with
energies typically in the range of 0–8 eV above the vacuum level, at least for the case
of graphene.1 As discussed in prior work, the interlayer states are free-electron like
[28], in the sense that in the spaces between the 2D sheets (the interlayer spaces),
these states have character similar to that of plane wave with wavevector magnitude
of �0 D p

2m.E � Evac/=„ where E � Evac is the energy of the state relative to the
vacuum level. The wavefunctions of the interlayer states tend to be concentrated
in the interlayer spaces; they have a local maximum at a location midway between
neighboring 2D planes.

Given a band structure of a vdW-bonded bulk material, we analyze it to determine
the amount of plane-wave character within the interlayer space that each state
exhibits. With the z-direction being along the c-axis of the material, it is only
necessary to consider states with wavevector components .kx; ky/ D .0; 0/ and
kz � k. We define an overlap between a wave function of the material and a plane
wave according to:

�˙ D
p

Ac

z2 � z1

Z z2

z1

�
0;0
�;˙k.z/exp.i�0z/dz; and (3.1a)

� � .j�Cj2 C j��j2/1=2; (3.1b)

1The interlayer band that we are discussing here, occurring in the 0–8 eV range, is actually the
lowest band of a pair of two bands. The upper band has energy of 14–22 eV, at least for the case
of graphene [20]. The combinations of image-potential states that form the bands are symmetric
(antisymmetric) for the lower (upper) band, relative to a location midway between the sheets of 2D
material.
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Fig. 3.5 (a) Band structure
of graphite, with wavevector
varying from � to A. Symbol
sizes, beyond a minimum
size, are proportional to the
value of � (Eq. (3.1)) for each
state. (b) Computed LEER
spectra of 3ML free-standing
graphene, with (blue solid
line) and without (red dashed
line) inelastic effects.
Energies are relative to the
vacuum level of the 3-ML
slab
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where A is the area of the lateral unit cell of the material and c is the c-axis
periodicity, z1 and z2 define the interlayer space over which the overlap is computed,
and �0;0�;˙k.z/ is the .Gx;Gy/ D .0; 0/ Fourier coefficient of the wave function (equal
to the wave function averaged over the lateral unit cell). We note that this form is
the same as the one we previously introduced in connection with our low-energy
reflectivity analysis, although in that prior analysis it was evaluated for the case of
far-separated 2D layers in a periodic supercell,2 whereas in the present case it is
evaluated between 2ML of a bulk material. All of the evaluations of � presented
below are performed by computing the overlap over a 2-Å-wide space centered at
the midpoint of the interlayer space, with z2 � z1 D 2 Å.

Before examining the band structure for the material of interest, WSe2, it is
instructive to first review the situation for simpler materials such as graphite and
hexagonal boron nitride (h-BN). Figure 3.5a shows the band structure of graphite,
for .kx; ky/ D .0; 0/. We use symbol sizes for the plotting which, for each state,
are given by some minimum symbol size plus an amount that is proportional to

2An additional distinction between the form introduced in Eq. (3.1) and that used previously in
Ref. [7] is that the former refers to states with ˙kz whereas the latter referred to even and odd
states formed by linear combinations of the ˙kz states. However, the resulting values for � are
identical for both cases.
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the computed value of � for that state. Hence, bands that have significant plane-
wave character (i.e., significant interlayer character) are revealed by the relatively
large symbol sizes. As is well known from prior work [2, 7], in graphite there is
only a single band with interlayer character, the one labeled “interlayer” at the
top of Fig. 3.5. Importantly, this interlayer band has its origin not in terms of any
atomic orbitals in the material, but rather, it arises from plane waves existing in the
interlayer spaces as already discussed above. All the other bands that are seen in
Fig. 3.5a, however, can be related to specific combinations of atomic orbitals, as
labeled at the top of the figure.

The situation for graphite is especially simple since there is zero coupling (zero
overlap) between the interlayer band and the overlapping and/or nearby bands.
Specifically, we consider the bands labeled 2p�

x;y, 2p�
z , and 3s in Fig. 3.5a. These

labels are meant to be approximate ones, indicative of the character of the states
in the bands. This character is readily apparent from several types of analysis;
examination of the spherical symmetry of the states relative to atomic locations,
tight-binding modeling of the bands and comparison to first-principles results,
examination of the dependence of the bands on interlayer separation, and individual
inspection of specific wavefunctions of the states [30]. We find that all of the
states of these three bands are orthogonal to the states in the interlayer band. This
orthogonality arises for the states of the 2p�

x;y band due to its composition in terms
of in-plane p-orbitals, whereas it arises for the 2p�

z and 3s bands because the wave
functions of states in those bands have opposite sign on neighboring C atoms of the
graphene lattice.

Figure 3.5b shows the low-energy electron reflectivity (LEER) spectrum that
arises from free-standing multilayer graphene containing 3 graphene layers, com-
puted without and with inelastic effects. As is well known from prior work, one
reflectivity minimum occurs for every interlayer space in the structure. For example,
for three graphene layers there are two interlayer spaces and hence two reflectivity
minima [7]. The theoretical spectrum including inelastic effects shown in Fig. 3.5b
is in good agreement with experiment [2, 21]. Importantly, since there is no overlap
between the states of the interlayer band and those of overlapping and/or nearby
bands, those bands make no contribution to the resulting LEER spectra.

In Fig. 3.6 we display results for h-BN. Figure 3.6a shows the bulk h-BN band
structure, again with symbol sizes computed in accordance with the � values. The
inequivalence between the B and N atoms of h-BN produces large changes to the
band structure compared to that of graphene, but nevertheless, a single interlayer
band together with a few nearby bands can be identified in Fig. 3.6a. One of
these nearby bands has 2p�

x;y character; as for graphene, the states of this band are
orthogonal to states of the interlayer band. However, in contrast to the situation
for graphene, the other two nearby bands, which for h-BN have mixed 2p�

z and 3s
character, are not orthogonal to the interlayer band. This difference occurs simply
due to the inequivalence of B and N atoms, which destroys the precise orthogonality
described above for graphite. Hence, these two nearby bands acquire some degree
of plane-wave (interlayer) character.
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Fig. 3.6 (a) Band structure
of bulk h-BN, with
wavevector varying from � to
A. Symbol sizes, beyond a
minimum size, are
proportional to the value of �
(Eq. (3.1)) for each state. (b)
Computed LEER spectra of
3ML of free-standing h-BN,
with (blue solid line) and
without (red dashed line)
inelastic effects. Energies are
relative to the vacuum level of
the 3-ML slab
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Resulting LEER spectra for 3 MLs of free-standing h-BN, with and without
inelastic effects, are displayed in Fig. 3.6b. In the absence of inelastic effects, the
coupling of the interlayer character with two of the nearby bands leads to reflectivity
minima associated with each of the bands. All of the three bands with interlayer
character in Fig. 3.6b display two reflectivity minima each, arising from the two
interlayer spaces. However, when inelastic effects are included, a large amount of
broadening occurs in the spectra, particularly for the two bands with mixed 2p�

z
and 3s character. The reflectivity maximum that occurs at 8:2 eV between these
two bands for the computation neglecting inelastic effects is greatly diminished
in size, to become a weak, local maximum which separates the two minima (at
7.0 and 9:5 eV) of this band. No discrete thickness oscillations are observed in
connection with these minima; the oscillations found in the absence of inelastic
effects are eliminated when the inelastic effects are included. Experimentally, a
broad reflectivity minimum centered at about 8:2 eV above the vacuum level has
indeed been observed in h-BN LEER spectra [8, 9], and two minima (or a minimum
and a shoulder) are seen within that broad minimum. As mentioned in Sect. 3.2,
for the computation of Fig. 3.6b we are employing values for the energy-dependent
imaginary part of the potential (which governs inelastic effects) which are somewhat
reduced from our typical values, in order to emphasize these features in the 7–11 eV
range (which are especially relevant for the WSe2 spectra).
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Figure 3.7 displays the bulk bands for WSe2. There are many more bands than
for graphene or h-BN, arising from the multiplicity of s, p, and d states of the W and
Se atoms. Low-lying bands of interest in Fig. 3.7a are numbered 1–7 (with band
7 being the relatively wide band with significant plane-wave character centered
at 10 eV). From a decomposition of the states into their s, px;y, pz, dz2 , dxz;yz, and
dxy;x2�y2 character (not shown), we find that bands 4 and 6, each of which is doubly
degenerate, have purely dxz;yz character, with nodal planes parallel to the xz and
yz planes. Hence, these bands have no plane-wave character, and they make no
contribution to the reflectivity. Of the remaining bands, band 3 is seen to have the
most plane-wave character, bands 1 and 7 have substantial plane-wave character,
and bands 2 and 5 have a small amount of plane-wave character.

Reflectivity for free-standing slabs of 1, 2, and 3 MLs of WSe2 are shown in
Fig. 3.7b–d, respectively. The spectra that do not include inelastic effects reveal
thickness oscillations for most of the bands, with the number of minima given
by either the number of layers (n) or the number of interlayer spaces (n � 1),
depending on the particular band. However, with inelastic effects included all of
these oscillations disappear, and the respective minima associated with each band
appear just as a single, broad minimum. These broad minima occur at approximately
the same energies (relative to the vacuum level) as the features observed in the
experimental spectra of Sect. 3.3. For comparison, these experimental curves are
reproduced in Fig. 3.7 as well.

Concerning the small reflectivity features discussed in Sect. 3.3 at 4 and 10 eV
which we associate with differing thicknesses of the WSe2, these are more difficult
to discern in the theoretical spectra. However, comparing the 1 and 2ML spectra, we
see a significant difference in their behavior near 10 eV; the former shows a single,
distinct minimum at 9:7 eV, whereas the latter displays a broad minimum extending
over about 9:0–10:5 eV (with two minima in the elastic-only computation seen at
either end of this range). For the case of 3ML of WSe2, an even broader minimum
near 10 eV is seen. Of course, an important distinction between the theoretical
spectra of Fig. 3.7 and the experimental spectra of Sect. 3.3 is that the former are
for free-standing WSe2 MLs, whereas the latter are for WSe2 on top of an epitaxial
graphene substrate. This difference is further discussed in Sect. 3.5.

3.5 Discussion

Computation of reflectivity spectra for WSe2 on few-layer graphene is quite com-
plex due to the poor epitaxial fit of the materials and the large size of the supercell
required. Nevertheless, predictions for the evolution of reflectivity minima for free-
standing slabs of 1-, 2-, and 3-ML WSe2 appear to be sufficient for interpretation
of the experimentally-measured reflectivity from WSe2–EG–SiC, despite neglecting
the effect of the substrate. In comparing the measured results from Sect. 3.3 to the
computed reflectivity in Sect. 3.4, it is important to note that the experimental curves
are measured versus sample voltage VS, and not energy above the vacuum level
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Fig. 3.7 (a) Band structure
of bulk WSe2, with
wavevector varying from � to
A. Symbol sizes, beyond a
minimum size, are
proportional to the value of �
(Eq. (3.1)) for each state.
(b)–(d) Computed LEER
spectra of 1, 2, and 3ML of
free-standing WSe2 as
indicated, with (blue solid
lines) and without (red
dashed lines) inelastic effects.
Experimental curves (gray
solid lines) from Fig. 3.3 are
superimposed for
comparison. Energies are
relative to the vacuum level of
the respective slabs
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E � Evac directly. Due to the work function difference	W between the electron gun
filament of the LEEM and the WSe2 on the sample surface, the experimental curves
are shifted approximately 2:2 V (depending on location) toward higher voltage.
Using a quantitative method for determining the local vacuum level outlined in
Ref. [9], the experimental reflectivity curves are shifted by 	W in order to plot
the spectra versus E � Evac D eVS � 	W C �c, including a small energy shift
�c � 0:1 eV to account for the peak energy of thermionic emission from the gun
cathode. With this method in place, it is possible to plot the experimental reflectivity
curves together with the computed ones in Fig. 3.7.

It is a known result that high-energy bands computed with PBE-GGA (as
discussed in Sect. 3.2) are generally lower energy than real bands. As such, the
subsequent computed reflectivity curves are typically shifted 0:5–1 eV lower along
the energy axis compared to experiment [30]. With this in consideration, we
conclude that there is reasonable agreement between the computed and experimental
minima near 0, 7, and 10 eV.

Critically, the minimum near 10 eV in the 1ML computed reflectivity curve
shown in Fig. 3.7b evolves into a broad, flat minimum in the 2ML case, as
in Fig. 3.7c. The flat minimum occurs in the computed reflectivity due to the
combined effect of two nearby states, one of which has lower energy and produces
a deeper minimum in the 2-ML case than in the 1-ML case. The elastic-only
computed curves show this behavior most clearly, although the overall effect
becomes complicated for more than 2ML. A similar flattening of the minimum near
10 eV is clearly observed in the 1- and 2-ML experimental curves (gray solid lines in
Fig. 3.7b, c), although in the measured curves there are two distinct minima, whereas
our best fit shows no clear oscillations using the inelastic model implemented
here. In any case, beyond 2ML it may be difficult to resolve additional minima
in measured reflectivity due to inelastic effects.

The states which form band 3 have strong interlayer character and subsequently
vary as the number of interlayer spaces, n � 1. In addition, states from nearby
band 2 couple and broaden the resulting reflectivity minimum such that for
1ML of WSe2, there is a narrow minimum near 3:3 eV, whereas for 2ML the
minimum is deeper and shifted to higher energy. This effect is also observed in
the experimental reflectivity outlined in Sect. 3.3 and therefore provides another
signature for discriminating between 1- and 2-ML WSe2. For a greater number
of layers, the computed minimum near 4 eV is expected to broaden and deepen
further, but will not develop countable oscillations like those near 10 eV. It is the
wide dispersion of band 7 that allows the states in the few-layer limit to be resolved,
as was the case for the interlayer bands in graphene and h-BN. Thus, for bands
with small dispersion the variation with number of layers is predicted to be less
pronounced.

Finally, although the computations considered here do not include the graphene
or SiC below the WSe2 layers, it is reasonable to posit that interactions between the
WSe2 and graphene might have an effect on the reflectivity. In particular, minima
associated with interlayer states in few-layer graphene occupy an energy window
from 0–7 eV, as in Fig. 3.5. The band gap in the WSe2 spectrum between bands
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1 and 2 reflects most electrons with energy in that range, and therefore prevents
coupling to graphene interlayer states below the WSe2, however, there may still be
coupling between the upper WSe2 band gap edge and 7 eV. Whether or not evidence
of this can be observed remains an open question.

3.6 Conclusions

We have shown that low-energy electron reflectivity measurements of WSe2–EG–
SiC yield distinct spectroscopic signatures for WSe2 and graphene regions. By
correlating the observed LEEM images with AFM scans of the surface, we have
identified monolayer and bilayer crystals of WSe2 and labeled the reflectivity
accordingly. Using a first-principles method of calculating electron reflectivity
curves from free-standing slabs of few-layer WSe2, we have assigned the observed
features in 1- and 2-ML-WSe2 reflectivity to specific states with strong plane-wave
character. We argued that enumeration of these states provides a clear evolution
of reflectivity minima as layer number increases, and that this evolution allows
discrimination between 1- and 2-ML-WSe2 from the reflectivity alone. Furthermore,
by numerically analyzing the spectral features from a LEEM imaging dataset it is
possible to generate a colorized map of WSe2 layer thickness with high fidelity
across the image. This method paves a path forward for quickly determining few-
layer WSe2 film thickness with atomic resolution, and may be applicable to other
TMD materials as well. The results and analyses presented here provide critical
insight for future studies of layered heterostructures including WSe2 and graphene,
as well as LEEM studies of other 2D materials.
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Chapter 4
Tunneling Transport Between Transition Metal
Dichalcogenides

Over the last 5 years, many groups have worked to fabricate vertical tunneling
devices using graphene, h-BN, and 2D semiconducting transition metal dichalco-
genides (TMDs). Within our own collaboration, we sought to make devices
exhibiting both resonant tunneling (between like bands in either electrode) and steep
switching (between unlike bands). Presently, there have been several successful
reports of negative differential resistance (NDR) in a number of devices [1–3],
beyond the graphene ones discussed in Chaps. 7 and 8. An even greater number
of studies have resulted in 2D devices with a similar vertical geometry that display
neither NDR nor steep switching based on vertical tunneling [4–7].

Needless to say, many groups sought to measure tunneling transport in devices
strikingly similar to the ones we proposed and were considering for experimental
studies. In this fast-moving context, we decided to pursue two paths in parallel:

1. Take advantage of the great progress in grown vertical 2D heterostructures
(largely within our own collaboration) by investigating these structures with low-
energy electron microscopy, a highly-suited tool for studying 2D materials with
which we have a great deal of expertise (as introduced in Chap. 3).

2. Build up a capability to assemble arbitrarily complex vertical heterostructures of
exfoliated 2D materials, with the goal of making high-quality devices with high
throughput (see Chap. 9).

In fact, this work proved to be successful in both approaches, but it is the effort
toward objective 1 that will be introduced in this chapter.

4.1 Introduction

Epitaxial growth methods, metal-organic chemical vapor deposition (MOCVD),
molecular beam epitaxy (MBE), and powder vaporization (PV), which proceed
in a layer-by-layer manner, provide many advantages for the synthesis of 2D
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materials. For vertical heterostructures in particular, layer-by-layer growth allows
direct control of the constituent materials in a serial fashion, and typically these
techniques can be scaled to large lateral dimensions in a way that is not possible with
exfoliated materials. Hence, a great deal of effort has gone into adapting epitaxial
growth methods to form atomic layers of MoS2, MoSe2, WSe2, h-BN, and others
on graphene [8–12], as well as graphene on h-BN [13, 14]. Graphene itself has been
formed in large-area films using CVD on metal foils with varying degrees of quality
[15–19]. Graphene with a high degree of epitaxial registration and uniformity has
been demonstrated by sublimation of Si from the .0001/-surface of SiC, forming
epitaxial graphene (EG) [20–23]. With these techniques available, it was possible to
begin developing processes for a wide range of layered heterostructures and vertical
tunneling devices.

From an interpretation standpoint, the most ideal vertical tunneling structures
would include an h-BN tunneling barrier, but experimentally it is easier and thus
reasonable to begin with stacking TMD layers without an explicit barrier material.
As such, the first reports of NDR observed in TMD–TMD vertical tunneling
structures did not posses a well-defined barrier, with the hope that the top and
bottom electrode layers would only weakly couple, thus forming an effective van der
Waals barrier between the layers. One of these early heterostructures was fabricated
by Roy et al. [1] using exfoliated few-layer WSe2 on MoS2, and the measured
NDR characteristic was attributed by the authors to be due to Esaki tunneling (that
is, not due to resonant momentum-conserving tunneling) [1]. Not long after, our
collaborators Yan et al. [3] reported NDR between vertically-stacked SnSe2 and
black phosphorus, both of which were composed of many layers (50–100 nm each),
also due to Esaki tunneling [3].

In another work, our close collaborators Lin et al. [2] observed NDR between
monolayers of WSe2 and MoSe2 grown on EG, as well as between MoS2 and WSe2
on EG in separate structures [2]. In both cases Lin et al. [2], argued that the resonant
tunneling was occurring between like bands, and hence did not result from an Esaki
mechanism. In this latter work, however, Lin et al. [2] did not fabricate true devices
in the traditional sense, with patterned contacts and well-defined device boundaries,
but rather used conducting-AFM (CAFM) to measure current from the tip through
selected vertical heterostructures into the underlying graphene. This allowed high
throughput electrical characterization, but simultaneously provided some ambiguity
in the interpretation of the transport results. To offer insight in this regard, we turned
to low-energy electron microscopy (LEEM), another high-throughput technique
that would allow us to investigate the structural and electronic properties of these
materials without the complications of device patterning. To begin this investigation,
we focused on simple heterostructures involving a single TMD formed on graphene,
which also showed interesting vertical transport with CAFM [10, 24, 25], and would
serve as a baseline for studies of more complex structures.

For the work involved in the following sections, Sarah Eichfeld carried out
the growth and sample preparation, Yu-Chuan Lin provided conducting-AFM
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measurements and leadership for the study, I carried out the LEEM measurements,
analysis, and extracted to work function differences, Jun Li provided charge transfer
computations, Yifan Nie performed DFT calculations to obtain the interface dipole
energies, and all contributors provided input in the final assembly of the results, with
guidance from Kyeongjae Cho, Randall M. Feenstra, and Joshua A. Robinson. This
work appears, in part, as published work adapted from Ref. [25], with permission
from The Royal Society of Chemistry.

4.2 Vertical Transport Between Tungsten Diselenide
and Epitaxial Graphene

Beginning with samples involving the growth of a single TMD overlayer formed on
epitaxial graphene on SiC (EG), our collaborators Lin et al. [25] observed peculiar
bimodal vertical transport from WSe2 into the graphene below. By placing a CAFM
tip coated with PtIr on monolayer islands of WSe2 and measuring the current as
a function of bias between the tip and the underlying graphene, Lin et al. [25]
noticed that the resulting current–voltage (I–V) characteristics varied substantially
from sample to sample. In some cases, the WSe2–EG behaved as a diode, with a
large increase in current occurring at biases greater than 1 V, whereas in others the
measured currents were several orders of magnitude larger, even at zero bias, as in
Fig. 4.1. To cast some light on this phenomenon, we consider the growth process
used to synthesize these samples.

Fig. 4.1 Electrical characterization of WSe2 grown on epitaxial graphene using conducting-AFM
(CAFM). The CAFM tip is positioned on a WSe2 island and current is measured through the WSe2
into the graphene below, as a function of voltage. Current–voltage characteristics are shown for two
substrate types: (1) fully hydrogenated epitaxial graphene (EGFH) and (2) partially hydrogenated
epitaxial graphene (EGPH), with current being highly resistive in the latter cases. Currents are
shown for locations on WSe2 as well as on bare graphene
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4.2.1 Sample Fabrication

Due to the isostructural nature of graphene with respect to TMD materials, its
atomic flatness when formed on SiC, and the advantages of having a semi-metallic
underlayer, epitaxial graphene on SiC (EG) was selected as the template for WSe2
synthesis. Prior to EG formation, the 6H-SiC substrates employed in this study
were etched by flowing a 10 % H2/Ar mixture at 700 Torr to remove subsurface
damage due to substrate polishing. The EG was then formed via a well-known
process [22] involving Si-sublimation from the .0001/-surface of the SiC at 1625 ıC
in a 200 Torr Ar-environment in a pure graphite heating chamber. Following
EG formation, WSe2 crystals were grown by Eichfeld et al. via metal-organic
chemical vapor deposition (MOCVD) using tungsten hexacarbonyl (W(CO)6) and
dimethylselenium ((CH3)2Se) precursors for W and Se, as described in Ref. [24].
Crucially, in order to prevent carbon impurity incorporation from the precursors
[24], a 100 % H2 carrier gas was used during the WSe2 formation on the EG. As a
side effect of flowing H2 gas at high temperature, depending on the conditions some
hydrogen intercalates between the graphene and SiC.

This too is a well-known effect, utilized in many studies to produce so-called
quasi-freestanding epitaxial graphene (QFEG) by passivating the Si dangling bonds
at the interface of the graphene and SiC [23]. Structural models of EG and QFEG
are shown in Fig. 4.2. To investigate the effect of hydrogen intercalation in our
fabrication process, samples were prepared at either 800 or 930 ıC during the
MOCVD stage, and characterized with LEEM.

(a)
Gr

buffer

SiC

(b)
Gr

Gr

H

SiC

Fig. 4.2 (a) Side-view of epitaxial graphene on SiC, which forms a reconstructed carbon buffer
layer upon Si-sublimation. Partial covalent bonding between the buffer layer and top silicon layer
of the SiC prevents graphene-like dispersion in the buffer layer, despite its hexagonal arrangement
of C-atoms. (b) Side-view of quasi-freestanding epitaxial graphene on SiC, formed by flowing
hydrogen at high temperature to passivate the dangling bonds on the SiC surface and thus decouple
the buffer layer, which subsequently becomes an additional graphene layer



4.3 LEEM Analysis of Tungsten Diselenide–Epitaxial Graphene Tunneling. . . 53

4.3 LEEM Analysis of Tungsten Diselenide–Epitaxial
Graphene Tunneling Heterostructures

In order to study the surface and electronic structure of the heterostructure samples,
low-energy electron microscopy (LEEM) with electron energies of 0 to 20 eV is
employed. In addition, low-energy electron reflectivity (LEER) provides an accurate
means of counting the number of graphene layers as well as extracting the work
function variation over the surface [26, 27]. The LEEM images of WSe2–EG from
800 ıC WSe2 growth show triangular islands of WSe2 with a characteristic size of
1 µm, nucleating preferentially near SiC step edges on the EG surface (Fig. 4.3). The
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Fig. 4.3 (a) Low-energy electron microscopy (LEEM) image of WSe2 grown on epitaxial
graphene on SiC at 800 ıC (referenced in text as EGPH), acquired at a sample voltage of 4:8 V.
Labeled points indicate locations of reflectivity spectra in (b), which are used to identify the
material coverage in the image. Bright triangles are WSe2 islands, dark regions are monolayer
and few-layer graphene on a graphene-like buffer layer at the interface of the graphene and the SiC
substrate. (b) Reflectivity spectra extracted from labeled locations in (a). 	W values, to the left
of each spectrum, quantify the electrostatic potential variation on the surface due to spatial work
function differences, and hence the variation in the vacuum level. (c) LEEM image of WSe2 grown
on epitaxial graphene on SiC at 930 ıC (referenced in text at EGFH), acquired at 4:1 V sample bias.
Bright regions are WSe2 crystals, dark regions are few-layer graphene. (d) Reflectivity spectra from
labeled points in (c), with small feature characteristic of a released buffer layer (due to passivated
SiC dangling bonds) near the onset voltage V0 D 	W=e.	W values show much smaller variation
between graphene and WSe2 in this sample compared to the 800 ıC growth sample
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graphene is found predominantly in monolayer + buffer layer form, but small bi- and
trilayer graphene crystals are also found on the surface. LEEM analysis indicates
that the buffer layer is continuous at the interface of the SiC and EG, suggesting
that only a negligible portion of this layer has decoupled during the 800 ıC WSe2
growth.

Low-energy electron reflectivity spectra of this sample show characteristic
oscillations for graphene and WSe2 for the respective regions of the surface and
allow material identification in the LEEM images, as shown in Fig. 4.3b for the
800 ıC WSe2 growth [28]. Such LEER curves also permit determination of local
work function differences on the surface, as described in Sect. 2.2. For sufficiently
low sample voltages (�2 V) the incident electrons are totally reflected from the
sample, near the so-called mirror-mode transition (see Sect. 2.2). The voltage of the
mirror-mode transition V0 corresponds to the work function difference,	W D eV0,
between the sample surface and the LEEM electron emitter cathode. Detailed fitting
of these transition voltages (energies), locally, for many points on the surface,
permits the extraction of variations in work function across the surface.

The average work function difference between the monolayer graphene regions
(which covers the majority of the exposed surface) and the electron emitter is
found to be 	WGr � hWGr � Wemi D 1:87 ˙ 0:03 eV. The values for bi- and
trilayer graphene regions are similar, and are summarized in Figs. 4.3b and 4.4.
The average work function difference between WSe2 and the emitter is 	WWSe2

�˝
WWSe2

� Wem
˛ D 2:18 ˙ 0:01 eV. Taking the difference of the monolayer graphene

and WSe2 work function differences, a vacuum level difference of ıEvac �
	WWSe2

� 	WGr D 0:31 ˙ 0:03 eV is found. Uncertainties in these values are
obtained from a combination of uncertainties in the measurement, analysis, and
variations on the sample surface, and are shown in Fig. 4.4. It is important to
note that this observed vacuum level (work function) difference is between (1)
WSe2–EG, that is, WSe2 in contact with underlying graphene (locations G and
H in Fig. 4.3a), and (2) bare graphene regions which are next to, but not directly
below, WSe2 (locations A and B in Fig. 4.3a). The presence of a vacuum level
difference in these regions implies that there must be an interface dipole, and
therefore charge transfer, between the WSe2 and the graphene below. Consistent
with this interpretation, it is noted that reflectivity curves measured on the WSe2
islands from 800 ıC growth (Fig. 4.3b) display a broad, sloping feature for voltages
below the mirror-mode transition. This feature also indicates the presence of charge,
or more specifically, electric dipoles on the edges of the triangular crystals which
displace the incident and reflected electron beam during measurement, thus reducing
the reflected intensity, as discussed in Sect. 2.2 and shown, for example, in Fig. 2.7b.

The WSe2–EG from the 930 ıC WSe2 growth shows similar 1 µm triangle islands
on an EG surface in LEEM (Fig. 4.3c), however, the sloping features in reflectivity
associated with charge accumulations are much smaller than in the sample from the
800 ıC WSe2 growth. In addition, the extracted work function differences between
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Fig. 4.4 Summary of extracted 	W values from WSe2–EGPH (dashed) and WSe2–EGFH (solid)
samples. Extracted values from a few locations are shown as horizontal lines for WSe2 and few-
layer graphene. Column labels for few-layer graphene indicate the total number of graphene-like
layers, so 1C 1 ML refers to 2 ML of graphene for the EGFH case and 1 ML plus a buffer layer in
the EGPH case. This grouping highlights the similarity in 	W values depending on the number of
layers. Average uncertainties are indicated by gray boxes for each grouping of 	W values

the WSe2 and the underlying graphene (in contact) in the sample from 930 ıC WSe2
growth are negligible (ıEvac � 	WWSe2

� 	WGr D 0:03 ˙ 0:03 eV) compared to
the sample grown at 800 ıC, suggesting limited charge transfer between the layers
after growth of WSe2 (Fig. 4.3d). These observations, along with the presence of an
additional, small minimum valley in the reflectivity near the mirror-mode transition
[23], are attributed to full hydrogenation of the SiC surface, which passivates bonds
between the carbon-rich buffer layer and the SiC, as shown in Fig. 4.2.

This has the effect of releasing the buffer layer and increasing the count of
freestanding graphene layers in the hydrogenated regions by one, creating quasi-
freestanding epitaxial graphene (QFEG), which is situated on H-terminated SiC
[29]. Based on the evolution of graphene Raman spectra (see Ref. [25]) and the
LEEM/LEER investigation (Fig. 4.3), we conclude that the WSe2 growth at high
temperatures (>900 ıC) leads to hydrogen intercalation and formation of fully
hydrogenated epitaxial graphene (EGFH), compared to samples grown at inter-
mediate temperatures (750–850 ıC) which form partially hydrogenated epitaxial
graphene (EGPH). Concurrently, the electrical properties of the WSe2–EG interface
appear to have significantly changed, as shown in Fig. 4.1.
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4.4 Charge Transfer in Tungsten Diselenide–Epitaxial
Graphene Heterostructures

The hydrogenation process is known to have a significant impact on the electrical
properties of graphene on SiC. Epitaxial graphene residing on top of the buffer
layer reconstruction of graphitized 6H-SiC.0001/ is n-type doped [22, 29, 30]
due to the combination of bulk and interface donor states [31, 32] and has a
Fermi energy 0:45 eV above the Dirac point [32]. In contrast, QFEG is known
to be p-type doped [23, 32]. This change has been explained by the presence
of the spontaneous polarization of the hexagonal 6H-SiC substrate, which lowers
the Fermi energy to a position 0.28–0:30 eV below the Dirac point for complete
hydrogenation [32, 33]. This modification in the doping of graphene can thereby
influence the electrical transport properties across the WSe2–graphene interface
on SiC. In order to elucidate the effect on transport properties, vertical current
versus voltage (I–V) measurements were performed on the 800 ıC and 930 ıC
WSe2 growth samples (labeled as WSe2–EGPH and WSe2–EGFH, respectively) in
conducting-AFM (CAFM).

A CAFM tip with PtIr coating and the graphene serve as the source and drain,
respectively. The WSe2–EGPH diode exhibits an I–V characteristic with current
turn-on at a bias greater than 1 V, whereas the WSe2–EGFH diode turns on near zero
bias (Fig. 4.1). To understand this difference, we consider the LEEM measurements
of these samples. Analysis of the onset voltages measured in Sect. 4.3 revealed
a work function difference ıEvac D 0:31 eV between the WSe2 in contact with
monolayer EGPH and the uncovered monolayer EGPH nearby. From the 930 ıC
growth sample, the work function difference ıEvac between the WSe2 in contact
with EGFH and nearby uncovered bilayer graphene EGFH (due to release of the
buffer layer) is near zero. Each measured work function difference in the layered
regions has two components:

1. An intrinsic interface dipole energy resulting from charge redistribution within
the graphene and WSe2 layers, separately.

2. An extrinsic dipole term resulting from charge transfer between the layers of
WSe2 and graphene.

The intrinsic interface dipole occurs in response to the difference in work functions
in the absence of doping, that is, assuming intrinsic WSe2 and graphene. This would
be equal to the vacuum level difference for undoped WSe2 and undoped graphene
at Fermi equilibrium. The extrinsic dipole is the component that results from excess
carriers in both layers transferring between the two in order to achieve Fermi
equilibrium. The system as measured in LEEM is of course already in equilibrium,
but these statements serve as models for understanding the source of each term.

To quantify these two components, it is necessary to calculate the intrinsic dipole
energy and thus extract the portion of the measured ıEvac that is due to charge
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transfer. Density functional theory (DFT) calculations of this intrinsic dipole are
performed using the Vienna ab initio simulation package (VASP) [34] with the
projector-augmented wave (PAW) method [35]. The local density approximation
(LDA) [36] is used to describe the exchange-correlation functional with the partial
core correction included. For details of this calculation, see the supplementary
information of Ref. [25]. The resulting value for the intrinsic dipole energy is
0:17 eV, with the dipole field pointing from the graphene toward the WSe2, that
is, the WSe2 electrostatic potential is 0:17 eV higher than in the graphene below.

Using this intrinsic dipole, along with the measured work function differences,
we propose a model in which the WSe2 has some unintentional p-type doping, and
subsequent transfer of charge between the EGPH or EGFH and the WSe2 (combined
with the intrinsic dipole) produces the observed variation in work function. With
knowledge of the doping density of EGPH and EGFH (.4 ˙ 1/ � 1012 cm−2 n-type
and .1:5 ˙ 0:2/ � 1013 cm−2 p-type, respectively, from previous electrical studies
of EGPH and EGFH) [29, 37], and using reported values of electron affinities for
monolayer graphene (4:57 eV) and bilayer graphene (4:71 eV) [38], we compute the
transfer of charge between the WSe2 and the EGPH or EGFH. This charge transfer,
for a given (unintentional) doping density of the WSe2, yields theoretical values
for the work function differences; the doping density is determined by matching
these differences to experiment. The models for band alignment changes due to
charge transfer in the two samples are shown in Fig. 4.5. For details regarding the
dependence of the results on the input electron affinities, see the supplementary
information of Ref. [25].

For the charge transfer computation, we employ the standard linear band struc-
ture around the K and K0 points for monolayer graphene in EGPH, and hyperbolic
bands near the band extrema for bilayer graphene in EGFH and for WSe2 around the
K and K0 points, based on tight-binding models [39, 40]. The method to compute the
electrostatics is similar to that discussed in Sect. 6.3 and described by Li et al. [41].
Figure 4.6 shows the final result of this calculation graphically, with band diagrams
of WSe2–EGPH and WSe2–EGFH interfaces in regions with partial WSe2 coverage.
Both the intrinsic interface dipole and the extrinsic dipole due to charge transfer are
taken into account, and equilibrium is reached when the Fermi levels are aligned.
The difference between the vacuum level of WSe2 (covering a portion of graphene)
and neighboring, bare graphene is thus a sum of the intrinsic interface dipole effect
and the charge transfer effect (ıEvac in Fig. 4.6).

In order to reach equilibrium between the layers of WSe2 and uncovered
graphene and simultaneously match the experimental values for relative work
function differences (0:31 eV and 0:03 eV for WSe2–EGPH and WSe2–EGFH,
respectively), we determine that unintentional p-type doping of 1:3 � 1012 cm−2 in
the WSe2 before charge transfer is required. In the model, when the WSe2 is put in
contact with n-type EGPH, electrons transfer from the EGPH to the WSe2, leading
to nearly complete compensation of the WSe2 p-type doping and thus negligible
carrier density in the WSe2. The Fermi level ends up well inside the band gap of



58 4 Tunneling Transport Between Transition Metal Dichalcogenides

μGr μWSe2

0.27

E′
vac

ΔE′
c = 1.69

after charge
transfer

EG WSe2

−6

−4

−2

0

E
−

E
′ va

c

μGr

μWSe2

0.31

Evac

ΔEc = 1.42

before charge
transfer

EG WSe2

(a)

μGr μWSe2

0.06

E′
vac

ΔE′
c = 1.62

after charge
transfer

QFEG
(2 ML)

WSe2

−6

−4

−2

0

E
−

E
′ va

c

μGr μWSe2

0.03

Evac

ΔEc = 1.56

before charge
transfer

QFEG
(2 ML)

WSe2

(b)

Fig. 4.5 Band diagrams illustrating the change in band alignment produced by charge transfer
effects at the WSe2–EG interface. (a) Alignment of monolayer EGPH and WSe2 bands as modeled
before and after charge transfer, and hence equilibrium. Experimentally measured work function
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the WSe2 and near the charge neutrality point in the graphene (Figs. 4.5a and 4.6a).
For the case of WSe2 put into contact with EGFH (which is p-type), s small number
of electrons transfer from the WSe2 into the EGFH layer, making the WSe2 more p-
type, with a carrier density of 2:9 � 1012 cm−2. Critically, the resulting Fermi level
of the WSe2–EGFH remains near the top of the WSe2 valence band. In summary, the
WSe2–EGPH forms a Schottky tunneling barrier (with low conductivity as a result),
whereas the WSe2–EGFH forms an ohmic contact (much higher conductivity),
leading to a 103� increase in current in the latter case (Fig. 4.1). Therefore, the main
component of the CAFM current near zero bias for WSe2–EGPH is due to tunneling
from the CAFM tip to the graphene through the WSe2 band gap. On the other hand,
for WSe2–EGFH, the WSe2 acts as an electrical short between the CAFM tip and the
graphene, and hence ohmic contact (Fig. 4.7).

For validation of our computed charge transfer calculations, we consider the sum
of the band gap and electron affinity of the WSe2, WSe2

C Eg, which is an output of
our model (only the sum enters since the electron density in the WSe2 conduction
band is negligible). In order to match the observed work function variations, we
deduce an unintentional doping density in the WSe2 of 1:3 � 1012 cm−2, and the
value of WSe2

C Eg is determined to be 5:1 eV. This value is consistent with a
recently reported electron affinity of �3:1 eV for WSe2 using a first-principles GW
calculation [42], together with a band gap of �2 eV, which is in agreement with
several recently reported experimental values [43, 44].

4.5 Impact of Tungsten Diselenide–Epitaxial Graphene
Characterization

This investigation combining LEEM/LEER, Raman spectroscopy, and electrical
characterization revealed that transport across the vertical interface of WSe2 and
graphene is controllable by the doping of the graphene. Moreover, by varying the
temperatures for WSe2 growth on epitaxial graphene in a pure H2 environment, it is
possible to tune the position of the Fermi level in the graphene by partially or fully
hydrogenating the EG–SiC interface. This in turn allows the conductivity of the
WSe2–EG junction to be tuned during the WSe2 formation process. Band alignment

J
Fig. 4.5 (continued) difference ıEvac D 0:31 eV is indicated between the vacuum level of
the graphene before charge transfer (left) and the WSe2 afterward (right). After balancing the
electrostatics, the Fermi level ends up in the band gap of the WSe2. (b) Alignment of bilayer EGFH

and WSe2 bands before and after charge transfer. The experimentally measured work function
difference is much smaller, ıEvac D 0:03 eV, and thus there is little charge transfer between the
layers, and therefore the Fermi level ends up near the valence band edge of the WSe2
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Fig. 4.6 (a) Model of equilibrium electrostatic potential and band alignment between regions
of EGPH covered by WSe2 and neighboring bare EGPH regions. Structure model (not on energy
scale) illustrates the layer order in covered region. WSe2 bands (E.kk/ below each region) are
superimposed on graphene bands to highlight the coexistence of the bands in that region (although,
in fact, they are separated spatially in z, and in momentum space depending on rotation). Energy
scale is referenced to the vacuum level of intrinsic graphene E.0/vac, that is, without doping or the
presence of an interface dipole. The raised part of the dotted line therefore indicates the effect of
the WSe2–EGPH intrinsic interface dipole, Ein, on the vacuum level. The total vacuum level change
ıEvac, including doping and an extrinsic dipole from charge transfer, is illustrated by the solid line.
(b) Equivalent model of equilibrium electrostatic potential and band alignment between regions of
EGFH covered by WSe2 and neighboring bare EGFH regions

models of two different heterostructures were constructed using the measured
work function difference between WSe2 and epitaxial graphene as extracted from
electron reflectivity. Taking into account their intrinsic interface dipoles and charge
transfer, the models suggest the presence of a Schottky barrier in WSe2–EGPH and
ohmic contact in WSe2–EGFH, in agreement with measured I–V characteristics.
The impact of this work is twofold: (1) we have demonstrated the feasibility
of engineering the interface between a 2D semiconductor and graphene to allow
desirable transport characteristics, and (2) we have shown that the nature of such
interfaces can be readily probed with a reliable, high-throughput technique based
on imaging with LEEM.
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Fig. 4.7 Schematic of electrical characterization using conducting-AFM (CAFM). CAFM tip is
placed on a WSe2 crystal and current is measured from the tip to the graphene side of the vertical
junction. (a) Current tunneling through the WSe2 due to the Fermi level residing in the band gap
of the WSe2 layer, as in the WSe2–EGPH sample. (b) Current conducting through semiconducting
WSe2 itself, due to the high carrier density in the WSe2 and ohmic contact between the WSe2 and
graphene, as in the WSe2–EGFH sample
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Chapter 5
Application of Work Function Extraction
Method to Material Characterization

In Sect. 2.2, I introduced a method for extracting lateral work function differ-
ences across the surface of layered two-dimensional heterostructures The analysis
techniques developed in Sect. 2.2 are applied to reflectivity of CVD-grown WSe2
crystals formed on epitaxial graphene in Chap. 4, and the resulting work function
differences are used to determine the change in band alignment of the WSe2 and
graphene layers due to charge transfer in the following sections. Ultimately, these
results are used to explain large differences in WSe2–graphene contact resistance
based on the preparations methods. The method of relative work function extraction
and determination of charge transfer, however, has other possible applications
related to material characterization as well. In this chapter, I address the utility of
low-energy electron potentiometry, that is, using LEER to extract work function
differences and hence the variation in electrostatic potential on surfaces, to examine
2D materials from a materials characterization standpoint.

In this work, samples were prepared by Suresh Vishwanath, led by Grace Xing.
Patrick Mende recorded the initial LEEM and LEED data, whereas I performed the
spectral analysis, work function extraction, and final assembly of the results. Jun Li
provided the computed values from charge balance.

5.1 Defect Density in Molybdenum Diselenide Prepared
by Molecular Beam Epitaxy

In this study, molybdenum diselenide (MoSe2), a 2D semiconducting transition
metal dichalcogenide (TMD) which is isostructural to WSe2, was formed on
epitaxial graphene (EG) using molecular beam epitaxy (MBE). Beginning with
EG (prepared using methods described in Sect. 4.2.1) as a substrate, electron-beam
evaporation of a Mo source was used simultaneously with a Knudsen cell supplying
Se to deposit a film at a rate of �0.3 monolayers per minute. Film growth was
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performed at 400 ıC, followed by 5–10 min of annealing at 400 ıC with the source
shutters closed to remove excess selenium [1]. Samples were transferred ex situ to
an Elmitec LEEM III for characterization, following several other characterization
stages [1].

LEEM images of the surface show relatively uniform contrast in large portions of
the surface (similar to the bright region in Fig. 5.1a), with larger variation in contrast
in a few regions with swirling morphology (dark region in Fig. 5.1a). Selected-area
diffraction (µLEED) of the bright and dark regions indicates differing crystallinity
between the two regions, as shown in Fig. 1 of Ref. [1]. In particular, the dark region
is shown to have the expected sixfold diffraction pattern of epitaxial graphene on
SiC, indicating that this is a bare region of the surface, not covered by a MoSe2
film. On the other hand, diffraction from the bright region is diffusely distributed
along a ring with a radius (reciprocal wavevector) that corresponds to a hexagonal
lattice constant of 3:25 ˙ 0:02 Å, peaked at six spots along the ring [1]. The sixfold
symmetry of the ring and the fact that the radius indicates an in-plane lattice constant
very close to that of MoSe2 (3:28 Å) suggest that the bright region is composed of a
polycrystalline MoSe2 film.

Turning to the spectroscopic characteristics of the surface, reflectivity spectra
taken from a few locations are shown in Fig. 5.1b. Oscillations between 3 and
7 V in curves D, G, H, and J are characteristic of interlayer states in few-layer
graphene, and hence allow identification of these regions as graphene, with 1, 2,
3, and 4 layers each, respectively. Curve A is something new, with reflectivity
minima that resemble those of WSe2, another 2D semiconductor with a similar
structure (despite the similarities, this spectrum is distinct from that of WSe2,
allowing discrimination between the two if required). Due to the agreement between
the diffraction pattern from the same bright region with the expected pattern from
MoSe2, we conclude that this spectrum and other similar ones from this region
(curves B and C) are characteristic of MoSe2, although the thickness of the film
is not clear from reflectivity without further detailed analysis (as is discussed for the
case of WSe2 in Chap. 3).

The mirror-mode onset voltages (discussed in Sect. 2.2) of the reflectivity curves
from different locations on this sample vary in a somewhat large range, an indication
of work function differences on the sample surface. Furthermore, there are sloping
features in the reflectivity near the onset voltage, especially for curves extracted
from locations near the border between the MoSe2 (bright) and graphene (dark)
regions. To investigate these phenomena, we focus on the shape of the reflectivity for
low voltages, as shown in Fig. 5.1c. The detailed features of curves D, E, and F are
characteristic of monolayer graphene on a buffer layer of SiC, in agreement with the
µLEED analysis of the diffraction pattern from the dark region in the image. Curves
A, B, and C, however, are attributed to the MoSe2 film, taken from the bright region
of the image. By carefully fitting the low-voltage part of these spectra according to
the procedure outlined in Sect. 2.2, we find that the onset voltages (and thus work
function differences with respect to the electron emitter) are bimodal. Specifically,
the sample–cathode work function differences in the MoSe2 region are all close
to 	WMoSe2

� 2:25 eV, whereas in the graphene regions 	WGr � 1:5 eV. These
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Fig. 5.1 (a) Low-energy electron micrograph of MoSe2 formed on epitaxial graphene by
molecular beam epitaxy. (b) Electron reflectivity spectra extracted from the labeled locations in
panel (a). Each curve is identified and labeled according to the characteristic spectrum of the
material. 1 ML, 2 ML, and so on refer to the number of monolayers (ML) of graphene present.
(c) Detailed view of reflectivity near the onset voltage of a few graphene and MoSe2 characteristic
curves, with vacuum level differences denoted by 	W

numbers are consistent for many points on the surface, and are therefore taken
to be representative of the entire imaged area. The work function difference (or
equivalently, the vacuum level difference) between MoSe2 and graphene is therefore
ıEvac D 	WMoSe2

�	WGr D 0:75 eV.
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Fig. 5.2 Nominal hole density of MoSe2 (before charge transfer) as a function of nominal electron
density in the epitaxial graphene (EG) below; calculated by balancing the electrostatics of MoSe2–
EG in order to produce a 0:75 eV work function difference between the layers, as observed in
experiment. The band alignment between MoSe2–EG is not precisely known, therefore three
curves are shown for different conduction band offset values, 	Ec � Ec � Ed , equal to the
difference between the MoSe2 conduction band edge and the graphene Dirac (charge neutrality)
point. The graphene is known to be n-type, with a density in the range of 2�1012 to 6�1012 cm�2,
and therefore the resulting MoSe2 hole density will fall along one of the curves in this range

This is a significant effect, much larger than that observed in the WSe2–EG
samples discussed in Sect. 4.3. In order to understand this value, we consider
possible doping in the MoSe2 and graphene which leads to charge transfer and a
subsequent interface dipole. Epitaxial graphene on 6H-SiC.0001/, the substrate in
this sample, is known to be n-type with a carrier density in the range of 2 � 1012

to 6 � 1012 cm�2 [2, 3]. Without knowing the precise value, it is still possible to
estimate the MoSe2 carrier density by calculating the amount of charge transfer
required to produce a 0:75 eV work function difference between the layers for a
range of graphene carrier density values. The result of this calculation is summarized
in Fig. 5.2, and is produced by balancing the electrostatics of a vertical junction of
MoSe2–EG subject to the constraint that ıEvac D 0:75 eV at Fermi equilibrium
(after charge transfer), as outlined in Sect. 4.4. In addition, the band alignment
between the layers of MoSe2–EG is not precisely known, thus we repeat this
calculation using several reported values for MoSe2 and graphene electron affinities
[4–7],

MoSe2
D Evac � Ec (5.1a)

Gr D Evac � Ed; (5.1b)
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to establish the range of possible MoSe2 doping densities based on conduction band
offset,

	Ec � Ec � Ed D Gr � MoSe2
(5.2)

with MoSe2 conduction band edge Ec and graphene Dirac point Ed (the charge
neutrality point of graphene, which is also the conduction band edge since the
conduction and valence bands touch at this point).

With these points addressed, we find that the 0:75 eV work function difference
between MoSe2 and epitaxial graphene implies that the MoSe2 began with a hole
density of approximately 5 � 1013 cm−2, using the mean values of graphene electron
density and conduction band offset (red curve in Fig. 5.2). This is an enormous
number of carriers, which in this model are ascribed to an equivalent defect density
in the MoSe2 film. Specifically, these defect states (in this model) manifest as a large
density-of-states near the valence band edge of the MoSe2; shallow acceptor states
which accept excess electrons from the graphene and thus generate a large dipole
between the two layers.

Alternatively, it is possible that these defect states exist in a distribution
throughout the band gap of MoSe2. In this case the defect density would need
to be even larger than 5 � 1013 cm−2 to produce the same 0:75 eV work function
difference, since the same total number of defect states spread out over the band gap
would only be partially filled after the charge transfer process, leading to additional
unoccupied defect states. In other words, the same amount of charge is transferred
in both models, but the shallow acceptor model (with a large number of defect states
per unit energy near the valence band edge) admits a smaller number of defect states,
all of which are filled during charge transfer. The shallow acceptor model, which
implies that the MoSe2 begins with large, unintentional p-type doping, therefore
provides a conservative estimate of the defect density in the MoSe2; it is more likely
that there are in fact a larger number of defect states present in some distribution
across the band gap. Recently, other workers have established the presence of dense
networks of line defects and mirror-twin-boundaries that result in mid-gap states in
MBE-formed MoSe2 [8–10]. These results provide further evidence that the MoSe2
film in this study, also prepared by MBE, is indeed highly defective, with a spatial
defect density of 5 � 1013 cm−2 or greater.

Regardless of the energetic distribution of defect states, the quantity of charge
transferred between the graphene and MoSe2 (which is the same in both models) is
rather large, and produces semiconducting MoSe2, with the Fermi level in the band
gap of the MoSe2 and slightly p-type graphene in covered areas, as shown in Fig. 5.3.
Based on the results of Chap. 4, we therefore conclude that the contact between the
MoSe2 film and the epitaxial graphene below is not ohmic, and would therefore
serve better as a tunneling barrier than as a contact or conducting medium. In this
case, of course, this conclusion is based on LEEM analysis alone, demonstrating an
additional application of the method developed in Chap. 4.
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Fig. 5.3 Model of equilibrium electrostatic potential and subsequent band alignment between
regions of epitaxial graphene (EG) covered by MoSe2 and neighboring bare EG regions. Structure
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Chapter 6
Theoretical Background

Regarding potential applications of 2D heterostructures, it is the focus to the
remainder of the thesis to investigate interlayer tunneling in layered heterostructures
from a theoretical perspective. Although the experimental findings of the previous
chapters provide meaningful contributions to the field on their own, these works
are additionally motivated by several key predictions which will be the subject of
the following chapters. Given that there are many exciting and novel properties of
2D materials, particularly pertaining to electronic behavior, it is therefore expected
that there will be equally novel and exciting properties in electronic devices based
on such materials. Interlayer tunneling devices in particular are an interesting
starting point for such considerations since the atomic flatness, lack of dangling
bonds, and highly-ordered nature of clean interfaces between 2D materials have the
potential to be superior to those founds in bulk materials. These properties are highly
favorable for tunneling applications, wherein the width, sharpness, and uniformity
of the tunneling barrier are critical parameters; tunneling rates typically being
exponentially-sensitive to such quantities. A pristine interface between graphene
and hexagonal boron nitride, for example, may very well be the absolute limit of
atomic sharpness and uniformity in condensed matter systems. Moreover, there are
topological advantages of using a layered 2D geometry, beginning with the fact that
it is possible to independently modulate the electrostatic conditions of two opposing
2D layers with fields from either side of the junction, not to mention various other
consequences related to screening of charges, in-plane and out-of-plane fields, and
so on.

With these concepts as motivation, we proceed to study interlayer tunneling
between 2D materials in the following chapters with theory and computation. In
Chap. 6 we establish the theoretical groundwork for computing tunneling currents
between 2D layers, and the electrostatics necessary to simulate realistic devices.
The theory of 2D–2D tunneling between monolayers of graphene separated by
hexagonal boron nitride is discussed in detail in Chap. 7, followed by comparisons
to experimentally measured tunneling currents in similar structures. Chapter 8
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addresses tunneling between bilayers of graphene, which requires additional the-
oretical complexity but allows for interesting new phenomena compared to mono-
layer graphene. Finally, a brief summary of experimental progress toward actual
fabrication of tunneling devices is provided in Chap. 9.

6.1 Interlayer Tunneling Between 2D Materials
and the Bardeen Method

Tunneling between sheets of 2D materials requires, in comparison to 3D materials, a
new way of visualizing the tunneling process. To illustrate the situation, let us refer
to Fig. 6.1 which shows the regular tunneling problem between two semi-infinite 3D
electrodes. Considering a wave incident from the left on the tunnel barrier, then there
will be a reflected wave in the left-hand electrode and a transmitted wave in the right-
hand electrode. From the ratio of the magnitudes of the transmitted to the incident
wave, one obtains the transmission probability T . Summing up these transmission
probabilities with suitable prefactors, one then obtains the total tunnel current.
The states thus formed are exact eigenstates of the system, and this procedure of
obtaining the current is equivalent to simply computing the current for each state,
using
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Fig. 6.1 Diagram illustrating exact solution to the typical 3D tunneling problem, with incident
and reflected propagating waves on the left side of the barrier, and an outgoing transmitted wave
on the right. Wavefunctions are separated into z-dependent and � D .x; y/ components. For a given
state, current is obtained by integrating the current density (Eq. (6.1)) over the x; y plane



6.1 Interlayer Tunneling Between 2D Materials and the Bardeen Method 75

Fig. 6.2 Scheme for considering interlayer 2D–2D tunneling in an exact manner, with current
flowing laterally along each electrode (propagating waves, with possible reflection and transmis-
sion). Tunneling occurs between the layers in the overlap region (without propagation in the
z-direction), with transmitted states maintaining their initial lateral momentum after tunneling.
Analytic solutions do not exist for this problem, even for simple band structures, and computational
solutions are impractical for realistic band structures

and then summing these individual currents over all the states. This type of solution
of the tunneling problem applies equally well to 1D or 3D electrodes, with the latter
case handled in a separable manner in which the perpendicular component of the
energy and momentum for each state are employed in the summation needed to
obtain the tunneling current.

Now consider the analogous 2D problem in which the electrodes of Fig. 6.1
are narrow sheets containing just one (or a few) quantum state(s) in the direction
perpendicular to the sheets. Such states do not have any momentum perpendicular
to the 2D sheets. That is, the states within the 2D materials are manifestly not
propagating ones in the direction perpendicular to the sheets. Hence, there is no
obvious way to apply a similar procedure as used for the 3D problem. For this
reason, one must approach the problem in a different way.

To treat the 2D–2D tunneling problem in an exact manner, one must consider
the current flowing along the 2D electrodes and then passing between the electrodes
in a direction perpendicular to the original current flow, as pictured in Fig. 6.2. We
show there a propagating state approaching the tunnel junction (overlap area of the
two sheets) from one side of the left-hand electrode. When this state (wavepacket)
reaches the junction, it will spread out into the neighboring electrode, and some
fraction of the state will then propagate (in the same direction as the original state)
in the other electrode. In this way, we can still manage to obtain a transmission
probability T for the tunneling process (and a current for each state), and by suitably
summing these probabilities (or individual currents), the total tunneling current is
obtained. This method for treating the 2D problem is clearly more complicated than
that employed for the 3D problem, since, again, the tunneling process is occurring
in a direction that is perpendicular (or, at least, not collinear) with the propagation
direction of the original state.

Because of this inherent complexity of the 2D–2D tunneling problem, simple
analytic solutions for this problem do not exist. Even with very simple models
for the 2D electronic band structures, it is necessary to couple plane waves into
the junction and allow them to “spread out” in the direction perpendicular to their
propagation direction. The non-equilibrium Green’s function (NEGF)[1] method
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Fig. 6.3 Illustration of the 3D–3D tunneling problem in the Bardeen approach. Wavefunctions
are first determined using a semi-infinite barrier (and thus the solutions are non-propagating),
and the presence of available states in the opposing electrode is treated as a perturbation on the
initial Hamiltonian on each side of the barrier. Current is obtained (despite non-propagating waves)
through a reformulation of Fermi’s Golden Rule, as described in Eqs. (6.2)

provides a formalism for achieving this sort of coupling of states from contacts to
the 2D materials, as in the far left edge of the upper 2D sheet in Fig. 6.2 and the
far right of the lower sheet. The solutions thus obtained for the tunneling current
are exact, within the model used for the electronic band structures. However, the
overall computational complexity of the 2D–2D tunneling problem precludes the
use of realistic band structures for the 2D material, and even for very simple band-
structure models it is not possible to obtain analytic solutions for the tunnel current.

Fortunately, an alternative treatment of the tunneling problem exists from the
work of Bardeen [2], and it can be directly employed for the 2D–2D tunneling
problem. This method can also be used for 3D–3D tunneling (as commonly used
for analysis of problems involving the scanning tunneling microscope[3]), and
we illustrate that situation in Fig. 6.3. The essence of the method is that we
start with exact solutions for the wavefunctions in each electrode in the absence
of the opposing electrode, and then in a time-dependent, first-order perturbation
computation (Fermi’s Golden Rule), we compute the probability of an electron in a
state of one electrode making a transition into a state of the other electrode. Consider
the states shown in the left-hand electrode of Fig. 6.3. Such states are solutions of
the single-electrode problem, with vacuum on one side of the electrode. Due to the
presence of the vacuum, the states are necessarily non-propagating, that is, they
carry no current in the direction perpendicular to the electrode surface.

Starting with these states of the single-electrode problem, now consider adding
the opposing electrode to the problem, and then computing the transition of the
state in the left-hand electrode over to a state of the same energy in the right-hand
electrode. Fermi’s Golden Rule can be used to obtain the total transition probability,
and hence the tunnel current, for all participating states. At first glance it may
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appear that such a perturbative treatment is invalid, since certainly the perturbing
potential of the right-hand electrode (its Hartree potential, in a single-particle
treatment) is very large, of order 101 to 102 eV. However, Bardeen demonstrated
that what is important for the validity of the approach is not the size of this potential
itself, but rather, the size of the potential multiplied by the probability amplitude
(wavefunction squared) of the state from the left-hand electrode [2]. In other words,
so long as the tunneling barrier is sufficiently high and/or broad, then the approach is
valid. Certainly for the problems that we consider in this thesis, with tunnel barrier
containing several layer of h-BN, this condition is well satisfied.

A second important result obtained by Bardeen was a reformulation of the
expression from Fermi’s Golden Rule into a form that is much more convenient to
evaluate [2]. Recall that in a usual time-dependent perturbation treatment, one would
have to evaluate integrals (matrix elements) that extend over the entire volume
spanned by the potential of the right-hand electrode, that is, involving the potential
of the right-hand electrode and the wavefunctions of both the left- and right-hand
electrodes. Bardeen demonstrated that this type of integral can be rewritten as
simply a surface integral over a boundary that separates the two electrodes, with
this surface integral involving only the wavefunctions of the respective states of the
left- and right-hand electrodes and not the potential of the right-hand electrode,
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In this way, the tunneling current can be seen to be determined by the “overlap” of
the states of the two electrodes at a location near or at the midpoint of the tunnel
barrier.

The Bardeen method can be applied in a straightforward manner to the 2D–2D
tunneling problem. We simply replace the semi-infinite electrodes of Fig. 6.3 with
thin sheets of material. The resultant quantum states of the 2D sheets do not have
propagating character in the direction perpendicular to the sheets, however, such
character is not required for application of the Bardeen method.

Hence, a relatively simple solution for the 2D–2D tunneling problem can be
obtained with this method. Compared to the situation pictured in Fig. 6.2 for 2D–2D
tunneling, which applies to the exact solution (using the NEGF method), the solution
using the Bardeen method can be illustrated as shown in Fig. 6.4. It is not necessary
to consider the lateral current in the 2D electrodes, nor involve the contacts to those
electrodes. Rather, the method allows us to focus simply on the flow of current
across the tunnel barrier itself. Of course, the transport of carriers within the sheets
may indeed be important in a full analysis of the problem, depending on the efficacy
of transport in the sheets compared to across the barrier. Nevertheless, the Bardeen
method allows us to focus on the flow of current through only the barrier, as an
initial, important step in the analysis of the entire problem.
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overlap integral

Fig. 6.4 Illustration of the Bardeen method applied to 2D–2D tunneling, with states in each layer
computed separately, without the presence of the opposing layer. The wavefunctions in each layer
have no propagating component in the tunneling direction. As a simplification to standard first-
order perturbation theory, tunneling current is computed by evaluating a surface integral in the
middle of the barrier using the matrix element defined in Eq. (6.2b), as opposed to computing a full
volume integral over a region containing a perturbing potential

6.2 Tunneling Between Monolayers of Graphene

6.2.1 Theoretical Formalism

In this section we review the case of tunneling between two graphene sheets as
first worked out by Feenstra et al. [4]. This review provides a good illustration of
the Bardeen tunneling method described in Sect. 6.1, and it also forms the basis
for later work presented in Chaps. 7 and 8 of the thesis. We begin by considering
tunneling between two graphene monolayers in the out-of-plane direction, z. In the
Bardeen approach, the tunneling current is computed by calculating the overlap of
the wavefunctions from either side of the tunneling barrier, in the middle of the
barrier. This is a perturbative approach; the barrier is first treated as a semi-infinite
object for each electrode separately, and the introduction of the opposite electrode
(with real states) is viewed as a perturbation on the barrier region. This of course
relies on the assumption of weak overlap in the barrier, as discussed in Sect. 6.1.
Beginning with a sum over transitions from states ˛ in the left-hand (L) graphene
electrode to states ˇ in the right-hand (R) electrode (and vice-versa),
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with tunneling rates ��1
˛ˇ and ��1

ˇ˛ for electrons going from L ! R and R ! L,
respectively, and Fermi occupation factors fL and fR for each electrode defined in
the usual way, f .E/ D f1C expŒ.E � �/=kBT
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are proportional to the square of a matrix element which includes the wavefunction
overlap evaluated over the 2D surface in the middle of the barrier region,
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with wavefunctions in the left- and right-hand electrodes ‰˛.r; z/ and ‰ˇ.r; z/. The
tunneling current including these elements becomes[4]
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with spin and valley degeneracies gS; gV D 2. Equation (6.6) echoes the form of
Fermi’s Golden Rule from time-dependent perturbation theory, however, with the
reformulation described in Sect. 6.1.

6.2.2 Simulation of Tunneling Characteristics

Using the formalism developed in Sect. 6.2.1, we proceed to compute tunneling
current by numerical evaluation of Eq. (6.6) using the wavefunctions for graphene
introduced in Sect. 1.1.1 with an additional, decaying e��z component in the out-of-
plane direction. With these wavefunctions, the matrix element is explicitly written
in terms of the wavevectors in each electrode, kL, kR, as evaluated in Sect. 7.2 and
shown in Eq. (7.4),

MkL;kR D „2�
2AmD

e��dg!.�L; �R/

Z
dS eiQ�rei.kR�kL/�r (6.7)

with misorientation vector Q introduced to quantify angular rotation ! between the
two graphene lattices, and chiral parts of the wavefunctions g!.�L; �R/.

A typical simulated structure is shown in Fig. 6.5a, with two monolayers of
graphene separated by a few layers of hexagonal boron nitride (h-BN), a 2D
insulator. Tunneling occurs for non-zero values of bias voltage applied between the
two graphene electrodes. For each bias voltage value, the electrostatics are solved
independently (as discussed in Sect. 6.3), and subsequently used to evaluate the
current with Eq. (6.6). For a given bias voltage, only states with:

1. matching energy (imposed by the ı-function in Eq. (6.6)),
2. matching lateral wavevector (momentum- or k-conservation, due to the ei.kR�kL/�r

term in the surface integral of Eq. (6.7)),
3. and only states between the two Fermi energies (from occupied to unoccupied

states)
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Fig. 6.5 (a) Schematic for graphene–insulator–graphene (GIG) tunneling structure, with two
monolayers of graphene separated by an insulating barrier, in this case, a few layers of hexagonal
boron nitride. (b) Band diagram for GIG junction at resonance. (c) Band diagram for GIG junction
off-resonance, in the valley region of the I–V characteristic. (d) Simulated current–voltage (I–
V) characteristic computed as described in Sect. 6.2.1. (e) Simulated electrostatics of the same,
showing Fermi shifts 	E D �� � for each electrode,and potential across the barrier �R � �R

are allowed to participate in the tunneling. Due to the restriction of k-conservation in
particular, and the reduced number of bands in two-dimensional graphene compared
to bulk materials, the tunneling current is highly non-linear with respect to bias
voltage.
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For example, for rotationally aligned graphene crystals (Q = 0), at one particular
bias voltage the graphene bands from either side of the junction will be energetically
aligned (Fig. 6.5b). In this special case, all states between the two Fermi levels have
matching energy and momentum with states on the other side of the junction, so
tunneling occurs between all of these states simultaneously. On the other hand,
for any other bias voltage the bands will be energetically offset from one another
(Fig. 6.5c), and although there are many states with matching energy in the opposing
electrode, there will in general only be a few states with matching wavevector, and
thus the current is greatly reduced for all other voltages. Matching states occur
at the intersection of the bands in momentum space, so for graphene electrodes
in rotational alignment, a single ring of states satisfies this condition (red ring in
Fig. 6.5c) along each Dirac cone. This leads to resonant tunneling in the current–
voltage (I–V) characteristic (Fig. 6.5d), and a phenomenon known as negative
differential resistance (NDR) in the voltage range where @I=@V < 0.

In principle, upholding strict wavevector conservation would lead to a ı-function-
like spike in the tunneling current at the resonance voltage [4], however, in practice
there are several sources of decoherence which serve to relax the wavevector
conservation condition and thus broaden the resonant tunneling effect. To capture
this behavior, the surface integral in the tunneling matrix element defined in
Eq. (6.5), normally evaluated over all space in the lateral dimensions, is restricted to
a finite region of wavefunction coherence[4] as discussed in detail in Chap. 7.

6.3 Electrostatics of Layered 2D Heterostructures

In order to calculate a tunneling current as a function of bias voltage applied across
the 2D layers, the potential difference is placed appropriately within the energy
arguments of the Fermi functions and ı-function themselves in Eq. (6.6) such that,

E˛ D E.kL/C �L D E.kL/C �L �	EL; (6.8a)

Eˇ D E.kR/C �R D E.kR/C �R �	ER; (6.8b)

where �L, �R refer to the electrostatic potential energies of each graphene sheet, and
� � � �	E. Here, we find the explicit terms for the electrode Fermi energies, �L

and �R, the difference of which is defined as the electrostatic potential bias,

eV � �R � �L: (6.9)

In Eqs. (6.8), we have introduced two new quantities, 	EL and 	ER, which
represent position of the Fermi level in each electrode relative to the charge
neutrality point of the graphene band structure (as discussed in Sect. 1.1.1). In
the work of Feenstra et al. [4], these terms were combined into one value, 	E,
which was equal in magnitude and opposite in sign between the two graphene
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layers due to the symmetry of the electrostatics model described therein. In a
subsequent work, Zhao et al. [5] calculated the tunneling current between two
graphene sheets sandwiched between top and bottom gates, with a symmetric
geometry and antisymmetric gate biases in order to enable an analytic form for the
tunneling current. The simplification of symmetric gating again allows the use of a
single 	E term, since the effect of the gate fields (with opposite biases applied to
the opposing electrodes) is to modulate the position of the bands with respect to the
Fermi levels, and given a symmetric geometry the modulation is of equal magnitude
on both sides. Here, for the sake of including gate modulation in more realistic
geometries, we introduce a generalized method for calculating the electrostatics of
layered 2D structures with arbitrary biases, as an extension to the work of Feenstra
et al. [4] and Zhao et al. [5].

6.3.1 Potentials Between Two Monolayers with Top
and Bottom Gates

This calculation is intended to provide a general formalism for solving the electro-
statics of a gated graphene–insulator–graphene junction in a parallel-plate geometry.
The convention will be to label a back gate with voltage VBG followed by source and
drain electrodes, and a top gate (VS, VD, and VTG, respectively). Switching from the
notation of Sect. 6.2, the graphene electrodes are now labeled as source (L ! S)
and drain (R ! D) in the parlance of electronic transport in field-effect transistors.

We define the system of conductors with a matrix equation, q D OCV, with
charges qi and electrostatic potentials Vi. A system of four conductors will take
the explicit form,

0

BB
@

q1
q2
q3
q4

1

CC
A D

0

BB
@

C11 C12 C13 C14
C21 C22 C23 C24
C31 C32 C33 C34
C41 C42 C43 C44

1

CC
A

0

BB
@

V1
V2
V3
V4

1

CC
A; (6.10)

with symmetric coefficients of capacitance Cij D Cji D @qi
ı
@Vj , which give

the total charge on a each conductor at unit potential, holding all other potentials
constant. In our model (2D layers which extend to infinity in the lateral dimensions),
each conductor is only sensitive to its immediate neighbors, so a few of these matrix
elements are zero (Cij D 0 for i < jj C 1j). Furthermore, since our overall system
is charge neutral

P
i qi D 0 and since the result should not depend on the choice of

ground potential Vi ! Vi C ıV , it follows that
P

j Cij D 0, and therefore we write
the diagonal elements as Cii D �Pj Cij,
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0

B
B
@

q1
q2
q3
q4

1

C
C
A D

0

B
B
@

�C12 C12
C12 �C12 � C23 C23

C23 �C23 � C34 C34
C34 �C34

1

C
C
A

0

B
B
@

V1
V2
V3
V4

1

C
C
A: (6.11)

For metal gates, we identify the potentials V1 D VBG and V4 D VTG, but the
graphene potentials are defined as V2 D ��S=e and V3 D ��D=e in terms of the
electrostatic potentials �i at the charge neutrality point. In addition, we relabel the
capacitances in accordance with each dielectric between elements, C12 D CBG,
C23 D Ct, and C34 D CTG. With these identifications, we rewrite the two middle
equations,

qS D CBG.VBG C �S=e/C Ct.�S � �D/=e; (6.12a)

qD D CTG.VTG C �D=e/C Ct.�D � �S/=e: (6.12b)

The net sheet charge density on each electrode is given by

qi D eŒ.ni � pi/ � Ni
; (6.13)

for electron and hole densities ni, pi and electrostatic doping (externally-induced
carriers) Ni. The charge densities are defined in the usual way,

ni D
Z 1

�i

dE
�i.E/

e.E��i/=kT C 1
; (6.14a)

pi D
Z �i

�1
dE

�i.E/

e.�i�E/=kT C 1
: (6.14b)

We may then solve Eq. (6.12a) for �D and insert the solution into Eq. (6.12b)
to obtain a single equation which must be solved self-consistently to obtain �S.
The result is then inserted back into Eq. (6.12a) to obtain �D. For convenience, we
introduce 	ED D �D � �D and 	ES D �S � �S and re-parameterize the problem
in terms of the Fermi shifts 	ED;S. Solving for the electrostatic potentials �D;S, or
equivalently, the Fermi shifts 	ED;S, fully describes the electrostatics needed for
the tunneling calculation, as shown in Fig. 6.5e. In terms of the relevant physics, the
classical capacitances of the tunnel barrier and gate dielectrics appear on the right
sides of Eqs. (6.12), whereas the quantum capacitances of the graphene electrodes
(which are significant given the geometry of the layers) and thermal distribution of
electrons are encoded in the Fermi integrals that appear in the charge terms on the
left sides of these equations.
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6.3.2 The Special Case of Bilayer Graphene

Due to the fact that the band structure of bilayer graphene (and thus, the density-of-
states, which directly affects charge distribution) is modulated by the application of
a transverse electric field component, the electrostatics for the double-bilayer tunnel
junction must be solved iteratively. The order of material layers for this section is
back gate–source–drain–top gate, as in Sect. 6.3.1. We begin by considering each
layer of graphene as a separate monolayer with potential �i for i D 0; 1; 2; 3 in
order to calculate the potential differences across each bilayer,

US D �1 � �0; (6.15)

UD D �3 � �2: (6.16)

We obtain the full set of coupled electrostatic equations for the four monolayers and
two gates by filling in the matrix equation qi D CijVj with the appropriate potentials
and capacitance terms,

0

BBBBB
BB
@

qBG

q0
q1
q2
q3

qTG

1

CCCCC
CC
A

D OC

0

BBBBB
BB
@

VBG

��0=e
��1=e
��2=e
��3=e

VTG

1

CCCCC
CC
A

;

OC D

0

BBBBB
BB
@

�CBG CBG

CBG �CBG � CS CS

CS �CS � Ct Ct

Ct �Ct � CD CD

CD �CD � CTG CTG

CTG �CTG

1

CCCCC
CC
A

:

(6.17)

Capacitances are calculated for large parallel plates, Ci D �i�0=di with dielectric
constant �i and interlayer separation di. The net charges are calculated by taking
the difference qi D eŒ.ni � pi/ � Ni
 between electron ni and hole pi densities and
environmental doping density Ni. Carrier densities are calculated using full Fermi
integrals with the monolayer graphene density of states �.E/ D 2jE � �j=�.„vF/

2,

n D
Z

dE �.E/f .E/: (6.18)

The system of equations (Eq. (6.17)) is reduced to a single equation by sequentially
eliminating each of the potentials �i until one remains, and the final equation is
solved numerically to determine the remaining electrostatic potential. This solution
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is then inserted back into the system of equations to calculate the remaining
potentials, and subsequently the potential differences in Eqs. (6.15) and (6.16).

Given these potentials �i we could, in principle, use them to determine the Fermi
shifts	Ei D �i ��i in each bilayer, using �S D .�0C�1/=2 and �D D .�2C�3/=2.
However, it would be more accurate to calculate the Fermi shifts using the proper
bilayer density of states. To do this, we write a new system of equations which treats
each bilayer wholistically,

0

BB
@

qBG

qS

qD

qTG

1

CC
A D

0

BB
@

�CBG CBG

CBG �CBG � Ct Ct

Ct �Ct � CTG CTG

CTG �CTG

1

CC
A

0

BB
@

VBG

��S=e
��D=e

VTG

1

CC
A : (6.19)

At this stage, the new system may be reduced to a single equation in terms of either
�S or �D, but using the bilayer density of states for the charge densities,

�BL.E;U/ D
X

n

dEn

dk

dk

dn
; (6.20)

which is calculated using the tight-binding dispersion for bilayer graphene, and
depends on the potential differences Ui calculated in the first part of the method.
Here, n represents a sub-band index. The remaining equation is solved self-
consistently to obtain the potential �S (�D), which is re-inserted into the system
given in Eq. (6.19) to determine �D (�S), and subsequently the Fermi shifts	ES and
	ED.

References

1. S. Datta, Nanoscale device modeling: the Green’s function method. Superlattice. Microst. 28(4),
253–278 (2000). https://doi.org/10.1006/spmi.2000.0920

2. J. Bardeen, Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961).
https://doi.org/10.1103/PhysRevLett.6.57

3. J. Tersoff, D.R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31,
805–813 (1985). https://doi.org/10.1103/PhysRevB.31.805

4. R.M. Feenstra, D. Jena, G. Gu, Single-particle tunneling in doped graphene-insulator-graphene
junctions. J. Appl. Phys. 111(4), 043711 (2012). https://doi.org/10.1063/1.3686639

5. P. Zhao, R.M. Feenstra, G. Gu, D. Jena, SymFET: a proposed symmetric graphene tunneling
field effect transistor, in Device Research Conference (DRC), 2012 70th Annual (IEEE, New
York, 2012), pp. 33–34. https://doi.org/10.1109/DRC.2012.6257006

https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1103/PhysRevLett.6.57
https://doi.org/10.1103/PhysRevB.31.805
https://doi.org/10.1063/1.3686639
https://doi.org/10.1109/DRC.2012.6257006


Chapter 7
Theory of Graphene–Insulator–Graphene
Tunnel Junctions

In this chapter, details of graphene–insulator–graphene vertical tunneling structures
are discussed from a theoretical perspective. Momentum conservation in such
devices leads to highly nonlinear current–voltage characteristics, which with gates
on the tunnel junction form potentially useful transistor structures. Two prior
theoretical treatments of such devices are discussed; the treatments are shown to
be formally equivalent, although some differences in their implementations are
identified. The limit of zero momentum conservation in the theory is explicitly
considered, with a formula involving the density-of-states of the graphene electrodes
recovered in this limit. Finally, various predictions of the theory are compared
to experiment. The work described in this chapter appears in published form in
Refs. [1] and [2]. Reproduced from Sergio C. de la Barrera, Qin Gao, and Randall
M. Feenstra. Theory of graphene-insulator-graphene tunnel junctions. J. Vac. Sci.
Technol., 32(4):04E101, April 2014. doi:10.1116/1.4871760, with the permission
of the American Vacuum Society.

7.1 Introduction

Recently, several research groups have reported theoretical and/or experimental
results relating to vertical graphene–insulator–graphene (GIG) tunneling structures.
The first such report dealt with coupled electron and hole gases in the two
opposing electrodes, predicted to form an exciton condensate that might survive
at temperatures as high as room temperature [3, 4]. The presence of this condensate
leads to an enhanced tunnel current (i.e., since the electrons and holes in opposing
electrodes have correlated spatial locations), but for a sufficiently high current the
condensate is expected to be quenched. Hence, a very nonlinear relationship of
tunnel current to voltage across the device, with negative differential resistance
(NDR), is expected. With a gate electrode on the device, a transistor-like operation is
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achieved in a device termed a BiSFET. We are not aware of experimental observation
of the BiSFET tunnel characteristic to date, although research on such devices is
likely continuing.

Following the BiSFET proposal it was realized by Feenstra et al. [5] that, even in
the absence of electron-hole coupling between the graphene electrodes, the single-
particle tunneling characteristics of GIG devices can be highly nonlinear. The
reason for this behavior arises from momentum conservation in the device, i.e. the
requirement that the lateral components of the wavefunctions for tunneling states
in both electrodes have the same (or nearly the same) wavevectors. A theory was
developed in which momentum conservation in an actual device was shown to
depend on the crystallographic order of the graphene electrodes, which is limited
by a finite size tunneling area (grains of the graphene) or through scattering from
defects in the graphene or insulator layers [5]. The effective size of ordered regions
in the electrodes can be characterized by a coherence length, with momentum
conservation being more rigorously followed when the coherence length is large.

Experimentally, early results by Britnell et al. [6] from GIG junctions did not
display any NDR. Indeed, their theoretical description of such devices employed
a theory in which momentum conservation is completely neglected. Similarly,
NDR was not seen in early reports from Roy et al. [7] for GIG junctions.
However, later results from Britnell et al. [8] did reveal NDR in the GIG devices,
and a correspondingly more general theory was described in which momentum
conservation is included. Related theories have been recently presented by other
authors [9–11].

In this work we compare the theoretical description by Britnell et al. [8] for GIG
devices to the earlier treatment of Feenstra et al. [5]. We find that the two treatments
are equivalent, at least in the limit of zero misorientation angle between the graphene
electrodes. This equivalence between the two theories, and the possible effects of
misorientation, are discussed in the following section. We also discuss the limit in
which momentum conservation is completely neglected [6], dealing in particular
with the problem of how to obtain absolute current magnitudes in that case. In
Sect. 7.3 we focus on hexagonal boron nitride (h-BN) barrier materials, describing
their complex band structure and hence revealing the energy dependence of the
tunneling decay constant. A comparison of the theoretical results with experiment
is given in Sect. 7.4, and the paper is summarized in Sect. 7.5.

7.2 Theoretical Formalism

In a prior report, Britnell et al. [6] presented experimental data for current–voltage
characteristics of a single-gated GIG junction, and interpreted the characteristics
using a theory in which momentum conservation is completely neglected. As
described in their work, the expression for the current then has the form

I /
Z

DL.E/DR.E/T.E/ŒfL.E/ � fR.E/
 dE (7.1)
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where DL and DR are the densities-of-states for the left- and right-hand electrodes,
respectively, fL and fR are their Fermi-Dirac occupations factors, and T.E/ is a
tunneling transmission term. In this expression the shift in the states and Fermi
energies of the two electrodes due to a voltage bias V between them is contained
within the DL, DR, fL, and fR terms, rather than in the energy arguments themselves
as done in Ref. [6], so as to be consistent with the formalism presented below.

When momentum conservation (wavevector conservation) for the lateral parts of
wavefunctions in the two graphene electrodes is included, then the theory becomes
significantly more complex as discussed in Refs. [5] and [8], which employ theories
that might appear at first glance to be quite different. We compare those two
theories in this section, showing that they are actually equivalent for the situation
of zero misorientation angle between the graphene electrodes. We discuss possible
effects due to misorientation, and we also identify a few other differences in
implementation of the two theories.

In Ref. [5], tunneling between two graphene electrodes is written in the Bardeen
formalism [12–15] in which the current is given by Eq. (6.6),

I D gV
4�e

„
X

˛;ˇ

ˇ̌
M˛ˇ

ˇ̌2�
fL.E˛/ � fR.Eˇ/

	
ı.E˛ � Eˇ/ (7.2)

where gV is the valley degeneracy of graphene, and the summation extends over all
states ˛; ˇ of the left- and right-hand electrodes, respectively. The matrix element
M˛ˇ is given by Eq. (6.5),

M˛ˇ D „2
2m

Z
dS

�
‰�̨ d‰ˇ

dz
�‰ˇ d‰�̨

dz

�
(7.3)

where m is the free electron mass and‰˛.r; z/ and‰ˇ.r; z/ are the wavefunctions of
the left- and right-hand electrodes (each of those electrodes taken to be connected to
a semi-infinite barrier), respectively. For a graphene–insulator–graphene junction,
M˛ˇ is evaluated in Ref. [5] by assuming the wavefunctions to be separable, with
exponentially decaying z-components and with lateral components that have Bloch
form, yielding

M˛ˇ D „2�
2AmD

e��dg!.�L; �R/

Z
dS eiQ�rei.kR�kL/�r (7.4)

where g!.�L; �R/ is an expression of order unity that involves the overlap of periodic
part of the lateral wavefunctions (�L and �R being the angular orientation of their
wavevector relative to the respective Dirac point), Q is the misorientation vector of
the graphene electrodes with corresponding misorientation angle !, and where kL

and kR are the lateral wavevectors of the states in the left- and right-hand electrodes,
relative to their respective Dirac points. All other parameters are defined precisely as
in Ref. [5]. Significantly, in Ref. [5] the surface integral of this equation is restricted
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in lateral extent, L, for both the x and y directions. This restriction can arise from the
lateral extent of the graphene grains in the electrodes, i.e. a “structural coherence
length,” as proposed in Ref. [5].

Turning to the theory of Ref. [8], the matrix element for the tunneling process is
written there as

MS
˛ˇ D

Z

V
dV ‰�̨.r; z/VS.r; z/‰ˇ.r; z/ (7.5)

where the integral extends over all space and VS is denoted as “scattering potential.”
In the computations of Ref. [8] this scattering potential is taken to be localized over
the region of the tunnel barrier. Although this form appears to be quite different than
that of Eq. (7.3), we demonstrate now that the two methods are equivalent.

Following Ref. [8], Eq. (7.5) is evaluated as (using notation of the present work)

MS
˛ˇ D 1

AD
e��du211e

i.�L��RC!/=2„
Z

dS eiQ�rei.kR�kL/�r (7.6)

where we have substituted back into Eq. (S11) of Ref. [8] their expression for
NVk

S .r/ from their Eqs. (S8) and (S9). For the purpose of comparing this equation
to Eq. (7.4), we have pulled out from the integrand the periodic part of the
Bloch function, i.e. following Ref. [5], to form the u211 prefactor. Additionally,
we have employed the sign convention for misorientation from Ref. [5], so that
the signs of Q and ! in Eq. (7.6) are opposite those in Ref. [8]. Now, comparing
Eqs. (7.4) and (7.6), we note that the expression g!.�L; �R/ in Eq. (7.4) is simply a
generalization of the u211e

i.�L��RC!/=2 terms in Eq. (7.6) (as shown in the latter part
of the derivation in Ref. [8]). With that, we find that Eqs. (7.4) and (7.6) produce
identical results so long as we take „ D „2�ı2m . In terms of the scattering
potential of Eq. (7.6), assumed as in Ref. [8] to be separable with VS.r; z/ D
VS.z/V

k
S .r/, this value of „ corresponds to VS.z/ D „2�ı2md for the case of

VS.z/ assumed to be constant over the barrier region. Thus, if Eq. (7.6) is used for
computing the tunnel current, then this specific magnitude of VS must be employed
(or, for a varying VS.z/ across the barrier, some generalization of this magnitude
could be obtained, again through the use of Eqs. (7.3) and (7.4)). With this specific
value, the tunneling formalism of Ref. [8] is then seen to be identical to that of
Ref. [5].

It should be noted that our comparison of Eqs. (7.3) and (7.4) with (7.5) and (7.6)
is made on the assumption that the latter equations are being used to compute
the total (or primary) tunnel current. Alternatively, if some secondary source of
scattering in the system is assumed, then Eq. (7.5) can be applied more directly,
with some arbitrary (assumed) value of the scattering potential. This distinction is
emphasized by Duke [13], where he refers to the primary contribution as the “elastic
coherent” one, computed using a matrix element like that of Eq. (7.3), and with any
secondary contribution computed according to a matrix element like that of Eq. (7.5)
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(see, e.g., Eq. (18.38) of Ref. [13]). In such a computation, however, the secondary
current would be summed together with the primary one. Use of such a summation
is not discussed by Britnell et al. [8], and so we interpret their equation as indeed
being intended for expressing the total tunnel current.

Despite the equivalence in the formalisms of Refs. [5] and [8], there are a number
of differences in the implementation of their theories for producing numerical
results. First, in Ref. [5] a specific model for the tunnel barrier was not considered
beyond what would be appropriate for a vacuum barrier (i.e., isotropic band with
effective mass of unity). In this respect the treatment of Ref. [8] for a specific barrier
material (such as h-BN) is significantly better. In Sect. 7.3 we extend that sort of
treatment, providing theoretical results for the energy dependence of the tunneling
decay constant.

A second difference in implementation has to do with the specific means of
evaluating the matrix elements. Consider the surface integral in Eqs. (7.4) and (7.6),
normalized to the area A of the junction,

1

A

Z
dS eiQ�rei	k�r (7.7)

where	k D kR � kL. In Ref. [5], this term is evaluated over a finite range, �L=2 to
CL=2 for both x and y directions, which for zero misorientation leads to

sinc

�
L	kx

2

�
sinc

�
L	ky

2

�
(7.8)

For the case of Ref. [8], this part of the matrix element is captured in their NVk
S .q/

term with q � 	k, which similarly restricts the region over which the tunneling
occurs in a laterally coherent manner. A quantity analogous to that in Eqs. (7.7)
or (7.8) would be NVk

S .q/=A, which in Ref. [8] is modeled as

1

A
�
q2c C q2

� (7.9)

where qc is some cut-off wavelength. If we compare the tunnel currents obtained
using Eqs. (7.8) and (7.9), we find fairly good agreement in the dependence of the
current on the parameters L and qc, so long as we take L D 2�q�1

c . However,
regarding the absolute magnitude of the current, we find poor agreement between
that obtained from Eqs. (7.8) and (7.9), even with the use of „ D „2�ı2m . This
problem arises from the specific dependence of Eq. (7.9) on the area A of the device,
which produces an incorrect dependence of the current on A (it should be noted that
Eq. (7.9) was presented in Ref. [8] primarily as a proportionality, i.e. without focus
on the absolute magnitude of the term). However, if we modify the form of Eq. (7.9)
somewhat, we can obtain current that scales properly with A. In particular, we use
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Fig. 7.1 Comparison of theoretical tunneling currents as a function of the bias voltage across
two graphene electrodes separated by a h-BN insulator using the theories of (a) Ref. [5] with zero
misorientation, varying coherence length L; (b) Ref. [8] with amplitude „ D „2�ı2m , varying
qc D 2�=L, and with the modified form of the scattering potential given in Eq. (7.10). In panel
(c), we show the equivalence of the two theories by computing the total current of a device with a
log-normal distribution of grain sizes with mean coherence length L0 and variance L20=10 with the
current for each grain size computed using the theory of Ref. [5]

2�q2cp
A
�
q2c C q2

�3=2 D 1
h
1C .q=qc/

2
i3=2 (7.10)

Equation (7.10) produces very similar results as Eq. (7.8) in terms of both the
parameter-dependence and the absolute magnitude of the current, still considering
zero misorientation.

The equivalence between the two theoretical treatments is illustrated in Fig. 7.1a,
b, showing a side-by-side comparison of tunneling currents computed using
Eqs. (7.8) and (7.10), respectively, with related parameters L D 2�q�1

c and
„ D „2�ı2m . Although the results are qualitatively similar, we consider Eq. (7.10)
to be slightly preferable compared to Eq. (7.8) for evaluation of the current, since
the latter employs sharp cut-offs for a single L-value in the x and y directions, which
produce small oscillations in the current–voltage characteristic above the main
resonant peak [5]. These oscillations are not present when Eq. (7.10) is employed,
since that equation is applicable to a distribution of L-values, as is likely more
appropriate for a physical device. We show this equivalence explicitly in Fig. 7.1c,
which is obtained by computing the total current density for a polycrystalline device
with a log-normal distribution[16] of grain sizes (i.e., a distribution of coherence
lengths). Including such a distribution of grains in a single device averages out
secondary oscillations due to grain size effects but preserves the resonant peak
structure and yields a tunneling characteristic similar to that of Eq. (7.10), shown in
Fig. 7.1b. Compared to a computation involving a distribution of grains and multiple
calculations with Eq. (7.8), a straightforward computation using Eq. (7.10) appears
to capture the relevant physics of a macroscopic device in a more compact form,
and thus we use Eq. (7.10) in all subsequent calculations.
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We conclude that the theories of Refs. [5] and [8], employing Eqs. (7.8) or (7.9),
respectively, are actually modeling the same aspect of the tunneling process, namely,
a restriction in the lateral extent over which the wavefunctions maintain their
coherence. In Ref. [5] this was described in terms of a grain size in the graphene.
In Ref. [8] this was described in terms of the “scattering potential” of Eq. (7.5),
with specific form given by Eq. (7.9) (or with a small modification to that, as in
Eq. (7.10)). Again, the effect of this “scattering potential” is to restrict the lateral
area over which coherent tunneling occurs. However, in Ref. [8] it is argued that
this restriction is not due to limited grain sizes in their devices, but rather, arises
from other scattering mechanisms in the system.

Another significant difference between the theories of Refs. [5] and [8] is in
the manner in which they deal with angular misorientation between the lattices of
the graphene electrodes. For Ref. [8], it is assumed that there is no dependence
on misorientation, with Eq. (7.9) being used in the computations where q D 	k as
defined following Eq. (7.7). That is to say, the factor eiQ�r in Eq. (7.7) is incorporated
in their definition of a modified scattering potential NVk

S .r/, so that the Fourier

transform of that quantity, NVk
S .q/, can be modeled directly by Eq. (7.9) without

any further explicit occurrence of the eiQ�r term. This treatment thus makes a
specific assumption about the scattering mechanism (although the specific physical
mechanism is not identified).

In contrast, in Ref. [5] the misorientation is fully included, employing Q C
	k in the argument of the combined exponentials of Eq. (7.7) where Q is the
misorientation vector. Similarly, writing Eq. (7.8) with inclusion of misorientation
we would have Qx C 	kx and Qy C 	ky in the arguments of the sinc-functions, as
evaluated in Ref. [5], rather than just	kx and	ky. For the present work in which we
use the more general form given by Eq. (7.10), we also evaluate that with jQ C qj
in the argument rather than just q. This procedure is followed for all subsequent
computational results in this work, so that using Eqs. (7.4) and (7.10) our matrix
elements are computed as

M˛ˇ D „2�
2mD

e��d g!.�L; �R/
h
1C .jQ C qj=qc/

2
i3=2 (7.11)

with q D 	k. The current is then given by Eq. (7.2).
Regarding the role of misorientation (as determined by Q), we find that this is

a large effect, consistent with the results of Ref. [5]. In Ref. [8], misorientation is
handled by absorbing the eiQ�r from Eq. (7.7) into their definition of the scattering
potential NVk

S .q/. We do not agree with their argument that the resulting current–
voltage relationship will not show a significant dependence on misorientation.
Certainly for small L (large qc) misorientation is not so important, but we feel that in
general the misorientation will play a large role in determining the current–voltage
characteristic. We thus feel that it is best to leave this issue as an open question for
the moment, hopefully to be addressed experimentally in future work.
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Summarizing this comparison of the theories of Refs. [5] and [8], we find the
following: (1) The two theories are formally equivalent, although we find that the
„ parameter in the latter theory must have a value of „2�ı2m (and also L is
related to qc by L D 2�q�1

c ). (2) The scattering term in the latter theory is slightly
modified here, as in Eq. (7.10). With that revision, numerical results from the two
theories are in good agreement for the case of zero misorientation. (3) For nonzero
misorientation, we believe that the former theory provides the correct form for
the tunneling current at least when finite grain sizes limit the lateral coherence
of the tunneling. For other scattering mechanisms perhaps misorientation is not
so important, as assumed in Ref. [8], although specific identification of such a
mechanism remains to be done. Further work, both experimental and theoretical,
is likely needed to evaluate the role of electrode misorientation in the tunneling.

7.3 Hexagonal Boron Nitride Tunneling Barrier

In the work of Britnell et al. [6], some specific details of a tunneling barrier
consisting of hexagonal boron nitride (h-BN) were described. We extend those
considerations here by considering the results of explicit computations of the h-BN
band structure. In Fig. 7.2a we display the band structure of h-BN along various high
symmetry directions, computed using density-functional theory with the Vienna Ab
Initio Simulation Package (VASP). We use the Perdew-Burke-Ernzerhof (PBE)[17]
parametrization of the generalized gradient approximation (GGA) for the electron
exchange correlation potential. We use projector augmented wave potentials [18, 19]
with a fixed energy cutoff of 400 eV (the default for N). The cell is fixed with
experimental lattice constants in the calculations. The zero of energy in Fig. 7.2a is
chosen to be coincident with the top of the valence band (VB); a band gap of 4:21 eV
separating the VB and the conduction band (CB) is found in our density-functional
computation, significantly less than the experimental value of 6:0 eV [20], with this
error occurring due to the well-known limitations of density-functional theory.

For tunneling, we require the band structure for complex values of the wavevector
k, as discussed in Ref. [6] by employing simple models for the band structure for
real k values and then analytically continuing those to imaginary k values. The
general behavior of such analytic continuation can be deduced from inspection of
complex band structures for other materials [21, 22], namely, that the curvature of
bands reverses sign when crossing from real to imaginary k across some critical
point in the band structure, but with the magnitude of curvature (effective mass)
being maintained. If the bands with real k approach a critical point with a nonzero
slope (as occurs when the Fourier component of the potential for that particular k
value is zero), then no continuation of the band into imaginary k values occurs.
Additionally, considering whether or not a band with imaginary k value will serve
to connect bands with purely real k (i.e., connecting the VB and CB of h-BN), then
the respective states for the two bands at the critical point must have nonzero overlap
[21], i.e.

˝
‰i

ˇ̌
‰j
˛ ¤ 0 for a band with imaginary k connecting states ‰i and ‰j.
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Fig. 7.2 (a) Band structure of hexagonal boron nitride, computed with density-functional theory.
(b) Band structure from a tight-binding model, including only pz basis states. (c) Complex band
structure from the tight-binding model, along the �A, ML, and KH directions. The right-hand
and left-hand panels for each direction show the band structure with varying imaginary part of kz.
In these panels, solid lines denote bands for which Re.kz/ is constant, equal to the value at the
point where the right- or left-hand panel joins the center panel. Dashed lines indicate bands for
which both Im.kz/ and Re.kz/ are varying, in accordance with the lines in the respective Im.kz/

and Re.kz/ panels. In each panel where Im.kz/ is varying, the range plotted is twice as large as in
the corresponding panel showing Re.kz/
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To explicitly obtain the complex band structure for h-BN, we employ a tight-
binding model with parameter values adjusted such that the bands approximately
match those of the density-functional computation (except for the band gap, where
the experimental value of 6:0 eV is matched) [20]. Results are shown in Fig. 7.2b,
where we have used a model with only pz-states on the B and N atoms as basis
functions (on-site energies of 6:0 and �1:9 eV, respectively), and assuming both
in-plane and out-of-plane nearest-neighbor B-N interactions (hopping energies of
�1:6 and 0:6 eV, respectively) as well as a second-nearest-neighbor in-plane N-N
interaction (�0:3 eV). Additionally, non-orthogonality between both in-plane and
out-of-plane nearest-neighbor B-N pz-orbitals is included (overlap matrix elements
of 0:05 and 0:03, respectively). The method of solution for this problem with the
non-orthogonal basis is described, for example, in Ref. [23]. Our tight-binding
results are similar to those of Robertson [24].

Comparing Fig. 7.2a and b, we see that the states derived from the pz-orbitals are
quite clearly apparent in the density-functional results. Some mixing occurs with
the other, sp2-derived states of the system, with the mixing being strongest in the
conduction band. However, for our purposes of evaluating the tunneling of states
with large in-plane momentum (near the K or M points), then we note in particular
that along the KH and ML directions the tight-binding description of the system
using only the pz-orbitals works quite well since the sp2-derived states are separated
from the VB and CB edges by about 5 eV. In terms of quantitative agreement
between the tight-binding and density-functional results, the former overestimates
the band widths for the pz-states along KH (these bands are very flat in the density-
functional results) and it underestimates the band widths for the �A direction.
Along ML, the band widths for the tight-binding and density-functional results are
reasonably close, within 15%, and those values are also in fairly good agreement
with many-body computational results [25].

From the tight-binding model we can obtain the complex band structure, shown
in Fig. 7.2c. Those plots are displayed with the same format as Ref. [21]. For
example, on the far right-hand side of the plot along the KH direction, in the panel
with varying Im.kz/, there is a loop connecting the VB maximum and CB minimum.
This loop is shown by a solid line, indicating that the Re.kz/ value for these states
is constant, i.e. it has a value corresponding to the H-point, Re.kz/ D �=c, where c
is the lattice constant of 6:66 Å. For states with energies within the band gap having
lateral wavevector corresponding to the K-point, then they will decay in the h-BN
with decay constant of � � Im.kz/ according to the values shown by this loop shown
on the far right of Fig. 7.2c. The wavefunctions of these states will, at the same
time, have a spatial oscillation given by Re.kz/ D �=c. This result of a combined
exponential decay plus oscillation is a basic feature of the h-BN eigenstates in the
Œ0001
 direction through the material (states that have exponential decay without
any oscillation are not eigenstates of the system).

Turning to the ML and �A directions shown in Fig. 7.2c, the situation is more
complicated. The dashed lines seen there in the Re.kz/ and Im.kz/ panels indicate
eigenstates for which both Re.kz/ and Im.kz/ are varying as a function of energy
[21]. Focusing on the results in the ML direction, we find a maximum value of
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� � Im.kz/ D 5:2 nm−1 for the (dashed) loop connecting the VB and CB states, at
an energy in the middle of the band gap. For the KH direction, at midgap we find a �
value of 4:6 nm−1, although as discussed above our tight-binding KH bands show too
much dispersion; flatter bands are expected to considerably increase this estimated
� value. Averaging over angles, we estimate a midgap � value of &5:0 nm−1. An
improved treatment of the complex band structure will provide a better estimate of
this value, as well as possibly producing a significant dependence of � on the angle
between the graphene and h-BN lattice.

Regarding the energy dependence of �, we have found in Fig. 7.2c that we have
loops connecting the VB and CB. In the absence of a loop, it is usual to model the
energy dependence as being parabolic with the energy 	E to a band edge, � Dp
2m�	E=„ with some effective mass m� [5, 8]. Now, including the loop, we use

this same formula for � but with an interpolation formula for an effective barrier
height 	E,

	E D .EC � E/.E � EV/

.EC � EV/
(7.12)

where EV is the energy of the VB maximum, EC is the energy of the CB minimum,
and E is the energy of a state within the band gap. For a midgap � value of �0, the
effective mass is given by m� D 2„2�20

ı
.EC � EV/ .

An experimental value for the tunneling decay constant is available from a
prior work of Britnell et al. [26]; computing the slope of their measured tunneling
resistance (on a logarithmic scale) as a function of number of BN layers, we find a
decay constant of 6:0 nm−1. The relationship of this value to the midgap �0 value
depends on the offset between the boron nitride VB and the Dirac point of the
graphene. Britnell et al. [6] have used an offset of 1:5 eV (i.e., one quarter of the
way up the band gap) [27], and as discussed in Sect. 7.4, they have argued that
this value accounts for an observed asymmetry in their device characteristics. As
also discussed there, from comparison of theory to experiment for other devices we
derive an offset value closer to the middle of the band gap [2]. In any case, in order
to be definite as to our choice of decay constant to use in our simulations, we take
the experimental value of 6:0 nm−1 and we assign that to the midgap �0 value. This
experimental value is slightly greater than that derived from the tight-binding model
discussed above, but still in reasonable agreement considering the uncertainties of
the theory. The �0 value of 6:0 nm−1 corresponds to an effective mass of 0:9 times
the free-electron mass.

7.4 Comparison to Experiment

In this section, we display various simulated results for the GIG current–voltage
characteristics, selected to provide comparison to experimental results published
elsewhere [8]. The device structures that we consider include either a single gate
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on the bottom of the device, or both top and bottom gates sandwiching the main
GIG structure. Voltages on the gates are denoted VBG and VTG for the bottom and
top, respectively. We denote the two graphene electrodes as the source and drain,
with the drain being the electrode closest to the top gate and the source closest to
the bottom gate. Voltages on the electrodes are denoted VS and VD for the source
and drain, respectively. We consider the current into the drain, ID, as a function
of VDS � VD � VS. Gate voltages are similarly referenced to the source voltage.
In all subsequent simulations we use the two-sided tunneling barrier described
by Eq. (7.12). We calculate carrier densities in the graphene electrodes using the
temperature-dependent integrals given in Eq. (27) of Ref. [5], in contrast to the zero-
temperature approximation employed in the computational results of our previous
work [2, 5, 28].

We first consider results obtained on devices that do not display NDR in their
characteristics, presumably due to a relatively small coherence length for the
tunneling. In Fig. 7.3, we display computed characteristics for a device whose
structure (tunneling barrier thickness and gate dielectric thickness) is identical to
that employed by Ponomarenko et al. [29], Fig. 4. This device did not display any

Fig. 7.3 Theoretical simulation of a GIG device with a back gate, corresponding to Fig. 4 of
Ref. [29]. The simulated structure consists of the top layer of graphene, four layers of h-BN, the
bottom layer of graphene, and 20 nm of h-BN on a silicon substrate (back gate) with a 300 nm SiO2
dielectric film. Both graphene layers are assumed to be undoped. Curves are shown for VBG D �55
to 0 V in 5 V increments. Zero-bias conductance versus gate voltage is shown in the inset. The
valence band offset that best fits with the experimental data is found to be 	EV D 1:5 eV
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NDR, and thus we simulate the characteristics with a coherence length of L ! 0

(that is, employing Eq. (7.1) and correcting the magnitude of the current according
to the discussion following Eq. (A.2)). Our computed curve for zero gate voltage
is essentially identical with that of Ponomarenko et al. [29], and in Fig. 7.3 we
display curves for various other gate voltages as well. Regarding the dependence
of the zero-bias conductance on gate voltage, Ponomarenko et al. [29] observed
distinct asymmetry with respect to the polarity of the gate voltage, and from that
they concluded that the valence band offset between the h-BN and graphene was
approximately 1:5 eV. Our computation of this gate voltage dependence, shown
in the inset of Fig. 7.3, agrees qualitatively with those of Ref. [29], though our
simulation uses the modified form of the energy dependence of � as given by
Eq. (7.12) and the temperature-dependent carrier densities mentioned in the previous
paragraph (whereas Ponomarenko et al. [29] appear to use the zero-temperature
form of the carrier densities).

In Fig. 7.4 we display computed characteristics for a device whose structure is
identical to that employed by Roy et al. [2], Fig. 5. Again, this device did not
display any NDR and we simulate it in the limit of L ! 0. We see a sloping
feature in the curves near VDS � 0:25 V, which corresponds to the Fermi level in the
top graphene electrode passing through the vanishing density-of-states at the Dirac
point. There are generally two such features in a given current–voltage curve; one
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Fig. 7.4 (a) Measured current–voltage characteristic from a GIG device fabricated with CVD
graphene and h-BN. Structure consists of a top gate, 10 nm of a HfO2 gate dielectric, the top
layer of graphene, four layers of h-BN, and the bottom layer of graphene on a doped silicon
substrate (back gate) with a 90 nm SiO2 dielectric film. (b) Theoretical simulation of this GIG
device, without momentum conservation, with top and bottom gates (denoted VTG and VBG). Both
graphene layers are p-type doped with a carrier density of p D 7:4� 1011cm�2 in each layer.
Curves are shown for VBG D 15–30 V in 1:5 V increments. Zero-bias conductance versus back
gate voltage is shown in the inset for a valence band offset of 3 eV (solid) and 1:5 eV (dashed).
The best agreement with experiment (shown in main panel) is obtained for a valence band offset at
midgap, 	E D 3 eV
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for each electrode as the Fermi level passes through the Dirac point of that electrode.
The sloping feature described here is due to the same phenomena as the plateau
feature described in Ref. [2], though it is less distinct due to the broadening effect of
finite temperature. Our computed zero-bias conductance versus gate voltage curve
is shown in the inset of Fig. 7.4. In this case, we find agreement between experiment
and theory for a valence band offset of 3 eV (solid curve), i.e. with the graphene
Dirac point closer to the middle of the h-BN band gap. If we use an offset of 1:5 eV
as in Fig. 7.3, we obtain the curve shown by the dashed line in the inset of Fig. 7.4,
which does not compare well to the experiment. This difference between the offsets
obtained for the devices of Figs. 7.3 and 7.4 is not understood at present, although
measurements for additional device structures will hopefully serve to clarify this
situation.

Considering the lack of NDR observed in the devices associated with Figs. 7.3
and 7.4, we have so far allowed the coherence length to serve as a free parameter in
the simulations and made no claims as to the source of wavefunction decoherence.
For the latter device, however, we do have additional evidence which suggests that
disorder in the graphene due to processing steps leads to a vanishing coherence
length. Using Raman spectroscopy, it is possible to identify materials by measuring
the amplitude of inelastically scattered light as a function of energy shift (typically
reported in units of inverse wavelength). The position and relative amplitudes of
peaks measured in these spectra are characteristic of the vibrational modes present
in the sample, and thus serve as a fingerprint for the constituent materials. For
instance, the sp2 network of carbon bonds in graphene and bulk graphite yields
a doubly-degenerate zone-center E2g mode (using the Mulliken symbol E2g to
represent the point group symmetry of this mode, as is convention in Raman
spectroscopy), leading to a Raman peak at �1580 cm−1, the so-called G-peak [30–
32]. In the presence of disorder, intervalley elastic scattering from a defect site
followed by inelastic scattering with a phonon leads to a peak at �1360 cm−1,
the D-peak of disordered graphene and graphite. This is a second-order effect
involving two scattering events, but nonetheless provides clear evidence of the
presence of defects (and boundaries) in a graphene lattice. An additional second-
order peak emerges around 2700 cm−1 (depending on excitation wavelength) due to
two-phonon scattering, often called the 2D-peak since the relevant phonons come
from the zone-edge, as in the D-peak. However, this transition does not involve
defect scattering and therefore is always present in graphitic-carbon materials, and
thus we refer to this peak as the G0-peak here to emphasize its association with
defect-free scattering in graphene.

Raman spectra from the graphene used to fabricate the CVD-based device from
Ref. [2] are shown in Fig. 7.5, measured before and after several processes steps
and transfer of the h-BN. After processing steps, including Ti deposition, removal,
and h-BN transfer, the graphene Raman spectrum shows a clear D-peak that was
not present before. In addition, there is a shoulder feature to the right of the G-
peak in Fig. 7.5b which is similarly associated with disorder in the graphene; the
D0-peak, resulting from a second-order intravalley scattering process [32]. This
feature in particular, present after processing along with the D-peak, helps to
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Fig. 7.5 (a) Raman spectrum obtained from monolayer graphene after transfer to the SiO2
substrate showing characteristic G and G0 peaks of graphene. (b) Spectrum of graphene after
transfer of h-BN to make device discussed in Fig. 7.4, showing enhanced D and D0 peaks due
to disorder introduced in processing. Reproduced from Roy et al. [2], with the permission of AIP
Publishing

distinguish the D-peak from what could otherwise be interpreted as the E2g mode
of h-BN, which is typically peaked near �1370 cm−1 [33–35]. The emergence of
strong D and D0 signatures in Fig. 7.5b suggests that processing introduced defects
which degraded the graphene and thus reduced the lateral wavefunction coherence,
ultimately causing a lack of resonance and NDR in the tunneling current.

Let us now turn to devices that do display NDR in their characteristics, indicative
of larger coherence lengths. Figure 7.6 shows simulated results for the device
structure of Britnell et al. [8], Fig. 1. This device has essentially the same structure
as the device in Ref. [29], yet exhibits clear NDR for a similar range of gate voltages.
Our simulations of this device in Fig. 7.6b–d use a lateral coherence length of 75 nm
and a valence band offset of 1:5 eV (although the results were not sensitive to the
precise value of the offset). Figure 7.6b shows the result of our theory for zero
misorientation angle between the graphene and the h-BN lattices. The resonant
peak behavior is in good agreement with the experiment; they are also very close to
the simulation results of Britnell et al. [8], since, as argued in Sect. 7.2, our theory
and their theory are essentially equivalent for the case of zero misorientation angle.
Shown in Fig. 7.6c, d are results for other possible values of the misorientation.
We see that a relatively small misorientation angle changes the tunneling current
characteristics significantly, shifting the resonant peaks out to larger bias voltages,
as well as flattening out the currents at low bias. This shift in voltage is caused
by the addition of the misorientation vector Q to the momentum conservation
condition, which pushes the resonance condition out to higher voltages [5]. For
certain doping situations (with nonzero misorientation), there is one positive and
one negative peak in the tunneling characteristic due to the symmetry between the
conduction and valence bands in graphene near the Dirac point. The conditions for
energy and momentum conservation of tunneling states with nonzero misorientation
are more complicated than for the oriented case, with situations such as those
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Fig. 7.6 (a) Measured tunneling characteristics for gated GIG device. Reprinted by permission
from Macmillan Publishers Ltd: Nature Communications, Ref. [8], copyright 2013. (b)–(c)
Simulations of resonant tunneling using a geometry corresponding to Fig. 1 of Ref. [8], reproduced
in panel (a) for comparison. Tunneling characteristics are shown for (b) zero misorientation,
(c) 0.5ı of misorientation, and (d) 1.0ı of misorientation between the graphene sheets. Curves
are shown for VBG D �55 to C15 V in 5 V increments. Computations are performed at low
temperature to match with experiment. The device structure is identical to that of Fig. 7.3,
with doping in the top and bottom layers of graphene set to p D 1:0 � 1012 cm−2 and n D
4:4 � 1011 cm−2, respectively

shown schematically in Fig. 7.7, leading to two resonant peaks at nearly opposite
voltages. We see such a peak develop for both signs of VDS in Fig. 7.6d (with a
misorientation angle of 1.0ı) over a wide range of gate voltages. Recently, this dual-
peak phenomenon has indeed been observed and reported by Mishchenko et al. [36]
in devices with finite misorientation.
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Fig. 7.7 (a) Intersection of graphene bands from two electrodes with nonzero misorientation,
at a bias voltage between the two resonant conditions, showing an elliptical set of states (bold)
which conserve both energy and momentum simultaneously. (b) Intersecting states for a bias near
resonance, extending through the conduction and valence bands of both electrodes, leading to a
large number of allowed tunneling states. There will be a second, similar set of intersection states
at close to opposite bias, resulting in a second resonant tunneling peak. (c) Intersecting states at a
bias beyond the region of resonance, with disallowed tunneling for a band of states between the
extrema of the hyperbolic intersections

The overall scale of our computed currents shown in Fig. 7.6 is significantly
larger than what has been observed experimentally, despite the fact that the simula-
tion parameters are partially derived from the measured value of � D 6:0 nm−1, as
discussed in Sect. 7.3. In addition, neither our theory nor the theory of Britnell et al.
[8] can account for the apparent linear background current observed in the devices
with NDR, as seen in Fig. 1 of Ref. [8]. One way to produce a linear background
current in the simulation is to average over all angles, as in Fig. 7 of Ref. [5],
however a range of misorientation angles does not appear to be consistent with this
experimental device. Further work is needed in order to resolve these discrepancies
between the theoretical and the experimental current–voltage characteristics.

7.5 Summary

In summary, we have investigated a number of theoretical issues relating to GIG
tunnel junctions. Conservation of lateral momentum in such devices leads to non-
linear current–voltage characteristics of the junction, with a resonant peak occurring
when the Dirac points of the graphene electrodes are aligned [5]. Addition of gate
electrode(s) can then produce transistor-type behavior of the devices [28]. Theories
describing the characteristics of the devices have been previously presented in
Refs. [5] and [8]. Despite the seemingly different derivations used for the two
theories, we have demonstrated here that they are actually equivalent. In both cases,
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a limitation of the lateral coherence length leads to broadening of the resonant peak.
However, an important distinction between the two theories is in the manner in
which misorientation of the graphene electrodes is treated; it is fully included within
the theory of Ref. [5] in which the limitation of lateral momentum is assumed to
arise through some limited area over which the tunneling occurs, whereas it has no
significant effect in the theory of Ref. [8] since the misorientation is folded into
the “scattering potential” of the problem. The theoretical work of Brey [37] fully
includes misorientation effects in the same manner as in Ref. [5].

Experimental results for GIG junctions have been reported [2, 6, 8], some of
which apparently display little or no momentum conservation, i.e. no resonant peak,
and others of which do display a resonant peak. In the former case the results
can be simulated with a simple formula involving only the density-of-states of the
electrodes [6]. We have used that formula here for simulating recent experimental
data[2] and we have also argued how the absolute magnitude of the current in
this type of computation can be determined. For data in which a resonant peak
is observed, we investigate the possible effect of electrode misorientation on the
results. At least for the data reported thus far, we find that the best comparison with
simulation occurs for zero misorientation angle, a conclusion which is apparently
consistent with the theory of Ref. [8] since it explicitly neglects the role of
misorientation. The reason for this lack of dependence on misorientation angle is
not clear at present.

Separately, we have investigated the complex band structure of the h-BN tunnel-
ing barrier material. The values of the tunnel decay constant � show dependence on
the misorientation angle between the graphene and the h-BN. A quantitative result
for this dependence is not available at present, but it is important to note that even
a relatively small variation in � can lead to a large variation in the transmission
term e�2�d. Thus, it is possible that the tunneling will be strongly confined to a
narrow angular range of lateral wavevectors in the h-BN. To achieve those particular
wavevectors in the h-BN, phonon scattering (or phonon-assisted tunneling) of the
graphene states may play an important role. The presence of a linear background
current in the measured characteristics, much greater than what is obtained in the
simulated current as discussed at the end of Sect. 7.4, possibly provides evidence of
such phonon participation in the tunneling process.
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Chapter 8
Tunneling Between Bilayers of Graphene

In this chapter, a theory is developed for calculating vertical tunneling current
between two sheets of bilayer graphene separated by a thin, insulating layer of
hexagonal boron nitride, neglecting many-body effects. Results are presented using
physical parameters that enable comparison of the theory with recently reported
experimental results. The observed resonant tunneling and negative differential
resistance in the current–voltage characteristics are explained in terms of the
electrostatically-induced band gap, gate voltage modulation, density of states near
the band edge, and resonances with the upper sub-band. These observations are
compared to ones from similar heterostructures formed with monolayer graphene.
The work described in this chapter appears in published form in Ref. [1]. Repro-
duced from Sergio C. de la Barrera and Randall M. Feenstra. Theory of resonant
tunneling in bilayergraphene/hexagonal-boron-nitride heterostructures. Appl. Phys.
Lett., 106(9):093115, March 2015. doi:10.1063/1.4914324, with the permission of
AIP Publishing.

8.1 Introduction

In contrast to the well-known linear dispersion of monolayer graphene (MLG),
charge carriers near the six corners of the Brillouin zone in an isolated graphene
bilayer are described by a quadratic energy dispersion [2, 3]. An even more
intriguing distinction with MLG is that, under the influence of external fields, the
band structure of bilayer graphene (BLG) near the charge neutrality point becomes
quartic, changing from semi-metallic to semiconducting as a small band gap is
induced [4–6]. This tunability of the band gap can be exploited by introducing
gates, doping, and interactions with substrate materials in electronic devices based
on BLG [7–9]. In this paper, we consider these effects and others in a 2D to 2D
resonant tunneling device composed of two sheets of BLG separated by a thin,
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insulating layer of hexagonal boron nitride (h-BN). In a vertical configuration with
an interlayer bias, tunneling between two-dimensional electron gases is constrained
by simultaneous energy and momentum conservation, leading to resonances in
the current–voltage (I–V) characteristic and thus regions of negative differential
resistance (NDR) [10]. Such devices were originally proposed for conventional
2D quantum wells [11], but the theory was recently treated for MLG [12–19],
and NDR was observed experimentally in high-quality devices shortly thereafter
[10, 17, 20]. The theory discussed in the present work is particularly relevant to the
recent observations of Fallahazad et al. [10].

8.2 Tunneling Mechanism

For a given interlayer voltage and for bilayers that are in crystallographic alignment,
the electronic bands of the top and bottom bilayer of graphene will overlap
for particular sets of states with equal energy and crystal momentum (Fig. 8.1).
Away from the resonance voltage, only the states near the intersecting ring(s) can

SiO2 dielectric
+ Si back gate

h-BN substrate

BLGh-BN

(a)

k

E(b)

(c) (d)

Fig. 8.1 (a) Device structure, with double black lines indicating each graphene bilayer (BLG)
and the group of orange lines representing four to six layers of h-BN. (b) Alignment of electronic
bands at an off-resonant interlayer bias voltage; blue (solid) curves for one bilayer and red (dashed)
for the other; (c) at the voltage which yields the primary tunneling resonance; (d) at a higher
voltage which aligns the lower bands of one bilayer with the higher sub-bands of the other. The
largest contribution to tunneling current occurs near the states where the two bands intersect. Bands
represent energy as a function of in-plane crystal momentum near one of the six corners of the
Brillouin zone
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Fig. 8.2 Calculated tunnel current density versus interlayer bias between undoped graphene
bilayers for a range of gate voltages. Upper inset: a similar computation for a larger voltage range
highlighting secondary resonances from the higher sub-bands. Lower inset: a closer view of the
VBG D 0 case, varying coherence length, a disorder parameter in the theory, from 50 nm (solid,
light) to 10 nm (solid, dark)

contribute to the tunneling current (Fig. 8.1b). However, for one particular voltage,
the electrostatic potential between the bands will be zero, allowing all states between
the two Fermi levels to tunnel simultaneously (Fig. 8.1c). The shape and position of
the resulting resonant peak in the I–V characteristic depends on the quantity and
sign of charge carriers in each bilayer, and therefore indirectly on external fields
(gate voltages) and the electrostatic doping conditions.

For example, in the absence of strong doping or substrate interactions, resonance
can be observed for both positive and negative bias voltages as the back-gate
voltage (VBG) is swept from one sign to the other (Fig. 8.2). Recently, Fallahazad
et al. have observed resonances with precisely this behavior in devices fabricated
with exfoliated BLG/h-BN/BLG on a h-BN/SiO2 substrate [10]. The width and
amplitude of each resonant peak relative to the background (non-resonant) current
are determined by the degree of coherence between tunneling wavefunctions, as is
discussed in detail in Ref. [18].

In addition to the primary resonance, the higher sub-band of one bilayer can
also come into alignment with the lower sub-band of the second bilayer causing a
similar spike in the tunneling current. Secondary resonances as well as an increase in
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background current from the upper bands entering the tunneling energy window can
be observed at larger voltages as shown in the upper inset of Fig. 8.2. Interactions
with the upper sub-bands are distinct from monolayer devices, and may provide
opportunities for multi-state logic devices.

At a smaller voltage scale, and especially at lower temperatures, it is possible to
observe additional features due to the tunable band gap in BLG. The presence of
a transverse electric field across a graphene bilayer induces a potential difference
between the two individual layers of graphene. This broken layer symmetry causes
a small band gap to open up around the charge neutrality point which increases
with the magnitude of the potential difference across the bilayer. In the tunneling
device modeled here, the interlayer and gate voltages modulate the separate potential
difference across each individual bilayer in a coupled system [9]. As a result, the
band gaps in both bilayers vary with voltage (typically at different rates), which
affects the overall tunneling current. For non-zero band gap, the precise form of
the energy dispersion is quartic near the gap, as in Figs. 8.1 and 8.3a. Moreover,
the location of the band gap is a ring of states concentric with the K-point. This
arrangement of states causes divergences in the DOS at the conduction and valence
band edges, which can yield additional spikes in the tunneling current for certain
electrostatic arrangements. Whereas the primary feature in the tunneling current
occurs when the electrostatic potentials in the source �S and drain �D electrodes are
aligned,	� D �S ��D D 0, other features due to overlap of the large DOS near the

μS

μD

(a)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

ρS(E)

(b)

ρD(E)

(c)

Fig. 8.3 (a) Electronic bands in the source (left) and drain (right) electrodes with the tunneling
barrier (band gap of boron nitride) in between at a small positive bias. Dashed lines indicate the
Fermi levels in each bilayer, �i D �eVi; not to scale. Density of states corresponding to (b) the
source electrode and (c) the drain electrode in the same bias condition as panel (a); energy axes in
units of eV. The alignment of the divergences in the density of states near the valence band edge
of each bilayer produces a large overlap of states and thus a spike in tunneling current
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(1) (2) (3)

(4)

1

2
3 4

Fig. 8.4 Low-voltage tunneling current for a device with a small amount of doping on the top
(drain) bilayer at 10 K showing a number of small features due to the alignment of various band-
edges, as explained in Fig. 8.3. I–V curves are shifted vertically for clarity. Numbered insets show
the band alignment for each of the four labeled points along the VBG D 40 V curve. Arrows indicate
electron current that produces the sharp feature in each case

band edges can occur when one of the four conditions 	� ˙ Eg;S=2˙ Eg;D=2 D 0

is satisfied (where Eg;i is the band gap in each bilayer), as in Figs. 8.3 and 8.4.
These features in the I–V characteristic are distinct from those caused directly by
momentum-conserving effects with complete band alignment (as in Fig. 8.1) and are
less sensitive to the relaxation of momentum conservation (decoherence), but may
be observed in tandem with the latter. In MLG there are no equivalent band edges,
and thus these additional sharp features are absent in monolayer vertical tunneling
devices.
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8.3 Theoretical Formalism

We use a tight-binding model for the dispersion of BLG with nearest-neighbor
hopping energy �0 � 3:1 eV, interlayer hopping energy �1 � 0:4 eV, and interlayer
potential asymmetry U [21]. Higher order considerations such as the trigonal
warping of the bands (azimuthal asymmetry) were found to have a negligible impact
on the tunneling and thus were excluded. The occupation of levels and band gap
in each electrode varies with the set of applied voltages, and thus the electrostatic
potentials are required to calculate the tunneling current. These potentials are
determined by first solving a matrix equation qi D CijVj, treating each monolayer of
graphene separately, to obtain the transverse fields across each bilayer. We then use
those fields to solve a second matrix equation treating each bilayer with the local
DOS for each layer within the bilayers, as discussed in greater detail in Sect. 6.3.2.
This method can accommodate both top and bottom gates, though we chose to focus
on matching with devices with only one gate in the present work. Net charges are
calculated using full Fermi integrals qi D eŒ.ni � pi/ � Ni
, ni D e

R
dE �.E/f .E/

to account for quantum capacitance and thermal occupation, with environmental
doping density Ni. We calculate the tunneling current by summing over the transition
rates between all states in the source and drain bilayers,

I D gsgv
2�e

„
X

˛;ˇ

ˇ̌
M˛ˇ

ˇ̌2�
fS.E˛/ � fD.Eˇ/

	
ı.E˛ � Eˇ/; (8.1)

with spin and valley degeneracies gs, gv and state labels ˛ and ˇ in the source and
drain bilayers [12]. The overlap integrals between states in the source and drain are
contained in the matrix element

M˛ˇ D „2
2m

Z
dS

�
‰�̨ d‰ˇ

dz
�‰ˇ d‰�̨

dz

�
; (8.2)

which is evaluated in a similar way as for MLG in Refs. [12] and [18]. We
calculate the surface integral in Eq. (8.2) over a region defined by the length scale
of wavefunction coherence in the device, a parameter we call the characteristic
coherence length, L. This is a disorder parameter which defines the degree of
momentum conservation and thus controls the width and amplitude of resonant
features in the I–V characteristic. The momentum (wavevector) conservation, chiral
(angular) terms, and crystallographic misorientation are encapsulated in the matrix
elements, while energy conservation is contained in the ı-function that appears in
Eq. (8.1) [12, 18].

In contrast to the theory for MLG devices, for BLG this ı-function must be
evaluated using the quartic dispersion relation in order to capture band-gap and
higher sub-band effects. Converting the sums over states in Eq. (8.1) to integrals
over k, we can evaluate the ı-function by changing variables from E to k,
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ıŒE.kS/ � E.kD/C	�
 !
X

i

ı.k � ki/

jf 0.ki/j (8.3)

for all combinations of bands between each bilayer, where f is equal to the original
argument of the ı-function, ki are the zeros of this argument, and f 0 is the derivative
with respect to k. This procedure allows us to remove one k-integration and proceed
to calculating the current. A small amount of broadening is introduced to handle the
singularities that arise near the band edges (an imaginary term i� is added to the jf 0j
denominator, with epsilon typically equal to 10�2„vF).

8.4 Comparison to Experiment

Comparing our theory with the experimental results of Fallahazad et al. [10], we find
for the undoped device at room temperature (Fig. 8.2) very good agreement both in
terms of the peak shapes and the gate-voltage dependence. For the low-temperature
results of Fig. 8.4, small peaks associated with DOS features become prominent,
superimposed on a broad momentum-conserving background current. We believe
the situation found in experiment at low temperature is the same, showing a similar
sharp peak superimposed on a smooth background current [10]. The interpretation
offered in Ref. [10] associates the sharp peak itself with a momentum-conserving
resonant effect, but no origin for the broad background is provided. Alternatively, in
our interpretation, both features can be well understood. The data for the undoped
device at room temperature (Fig. 8.2) can be similarly understood within the same
framework. Sharp DOS features are not seen for the latter, either in theory or
experiment, since the higher temperature leads to a reduction in the amplitude of the
sharp peaks (at elevated temperature the tunnel current includes contributions from
nearby states that are thermally occupied, leading to a reduction in strength of the
sharp peaks). This distinction between DOS versus momentum-conserving effects,
as provided by our theory, provides an expanded interpretation of the experimental
results [10].

8.5 Conclusions

While resonant tunneling in MLG heterostructures is novel and intriguing, the
additional sub-bands in BLG as well as its unusual behavior in the presence
of transverse fields provide many additional channels for interesting tunneling
phenomena. Although the results presented here were calculated with zero angular
misorientation (perfect crystallographic alignment) between the two bilayers of
graphene, the theory readily computes current for non-zero misorientation, as
discussed and observed in prior work for MLG [12, 18, 20]. Concerning possible
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misorientation within the graphene bilayers themselves, this is known experimen-
tally not to occur for the devices of Fallahazad et al.[10]. An additional source of
misorientation in the device would be that between the graphene bilayers and the
h-BN layers of the tunnel barrier. We have not investigated this effect in detail,
although referring to prior work for twisted BLG [22, 23], it appears that such
an effect would give rise to a reduced transmission current through the entire
heterostructure. Indeed, for the case of tunneling between MLG layers separated
by h-BN, computed tunnel currents agree in detail with experiment, except that the
theory is a factor of 103 to 104 too large [18]. We find a similar discrepancy in
absolute magnitude of the current for the present situation of BLG/h-BN devices,
and we consider it likely that the reduced conductance of the BLG/h-BN interface
is the source of this discrepancy.

For BLG devices, we find that DOS effects are largely unaffected by small
amounts of angular misorientation between the bilayers, whereas momentum-
conserving resonant peaks are shifted due to the change in conditions required for
band intersection, as in monolayer devices. We note that the electronic properties of
the BLG can be expected to be influenced by the neighboring h-BN, in analogy with
the MLG case [24]. Such effects are typically on the 1 to 10 meV scale; they will
be important for a very detailed comparison between experiment and theory, but in
terms of the overall distinction that we make here between DOS and momentum-
conserving effects these effects can be neglected. Similarly, we neglect many-body
modifications to the BLG band structure (including many-body effects between the
two graphene bilayers, since they are separated in the experiments[10] by four to
six monolayers of h-BN). The effects of external in-plane magnetic fields have been
explored for similar monolayer and monolayer/bilayer devices [19, 20, 25], but are
not considered here for brevity. Finally, inelastic effects may play a role in some
devices, particularly at room temperature, however, we have focused here on elastic
interactions, which play a large role in the relaxation of momentum conservation and
subsequently the strength of resonant behavior compared to background current.
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Chapter 9
Progress Toward 2D Tunneling Devices

In addition to characterizing layered 2D heterostructures with LEEM and perform-
ing simulations of tunneling transport in such structures, we sought to build up a
capability to quickly assemble 2D heterostructures from exfoliated 2D materials in
parallel. The advantages of such a capability are twofold:

1. Exfoliated 2D crystals are typically of very high quality; many outstanding
results from early investigations of 2D materials involve exfoliated materials,
which often provide high crystallinity and purity without much effort beyond
obtaining reliable bulk source material [1, 2].

2. Major strides in experimental techniques for integrating exfoliated crystals into
layered heterostructures have enabled rapid fabrication of such structures with
arbitrary complexity [3–5].

Devices can be made on an individual basis by performing electron-beam lithogra-
phy in various stages of heterostructure fabrication to pattern critical components
such as electrical contacts, gates, and insulating layers. From the perspective
of industrial production technologies, electron-beam lithography is a slow, serial
method for patterning of devices. Moreover, exfoliated crystals, which are typically
small in lateral dimensions and highly variable in terms of yield, are therefore
not scalable for production. Nevertheless, for the purposes of scientific research,
exfoliated crystals are quite ideal.

Despite the relative ease with which 2D devices can be fabricated using
exfoliated materials compared to bottom-up (growth) methods, which are presently
lagging behind exfoliation methods in terms of development, the task of making a
device from start to finish is still rather complicated. The steps involve exfoliation
and identification of useful crystals (by itself, a time-consuming task), a clean and
reliable method of picking up and transferring the layers, one-by-one, to build up
the desired heterostructure with as few undesirable impurities between the layers as
possible [6], and finally several carefully-designed steps to define electrical contacts
with suitable work functions, low contact resistances, and minimal influence on the
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physics of the device itself. Tunneling devices require even more care in design and
fabrication given that tunneling is exponentially sensitive to distance; uniformity
of barrier thickness is essential, meaning intercalated materials and defects are
even more critical than in conventional devices. Finally, crystal orientation between
the layers is often highly relevant to the tunneling, as discussed in Chap. 7.
Although diffraction techniques such as LEED may provide some insight into
crystal orientation, integration of diffraction into the process flow of fabricating a
device is non-trivial.

These difficulties must be overcome, however, if the goal is to measure transport
in real 2D devices. To this end, I will outline the state of progress toward this goal
at Carnegie Mellon University, beginning with my personal contribution to creating
a new user facility in Sect. 9.1.

9.1 A New Facility for 2D Crystal Exfoliation and Transfer

As part of a collaborative center at Carnegie Mellon University aimed at studying
2D materials, I designed and outfitted a new facility for the express purpose of
exfoliating and transferring 2D crystals for device fabrication. With the intention
of enabling the cleanest interfaces possible, all equipment and materials in the
facility are enclosed in a custom 130 ft2 clean room area with two large HEPA
filters maintaining a modest positive pressure with respect to outside air to purge
the facility area of the majority of airborne particulates. Inside the clean area are
nitrogen-purged and vacuum storage systems for long-term storage of bulk material
sources (with varying degrees of air sensitivity) and samples, an exfoliation area,
optical microscope, atomic force microscope (AFM), and transfer station (Fig. 9.1).

Exfoliated crystals are prepared by repeated mechanical cleavage (separating the
layers) of a small flake of bulk material using Scotch tape or polydimethylsiloxane
(PDMS) to achieve a high density of thin (not necessarily 2D) material on the tape
(or PDMS). The tape is then adhered to a separately-prepared clean silicon “chip”
(see item (c) in Fig. 9.1) with a 300 nm SiO2 oxide layer. Depending on the material,
heat is sometimes used to promote contact between the crystals on the tape and the
SiO2/Si surface. The tape is removed from the surface, and if the procedure was
successful then there will be a number of crystals that remain on the surface of the
chip, having cleaved once again from the underside of thicker crystals which remain
stuck to the tape. The fact that this procedure works at all is a bit miraculous, but
indeed, if performed correctly, this method can yield 2D crystals from many types
of layered materials.

Identification of exfoliated crystals proceeds by optical inspection, with the
thinnest crystals (monolayer, bilayer, up to a few layers) being visible, and in fact,
distinguishable, due to an optical interference effect with the 300 nm oxide layer [7].
A single exfoliation attempt with high-quality graphite onto a 1 cm2 chip typically
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Fig. 9.1 Photograph of Wentworth PML8000 probe station and micromanipulator modified for
transfer of 2D layers, with (a) Temptronic TPO3020B temperature controller and heated stage, (b)
custom vacuum chuck, (c) substrate with exfoliated crystals, (d) transfer slide with polymer stack
(underneath) used to pick-up and put-down 2D crystals, (e) micromanipulator arm, and (f) optical
microscope for aligning layers and monitoring assembly

yields on the order of 2 useful monolayers of graphene, each with lateral dimensions
ranging from 10 to 100 µm. Exfoliation of bulk h-BN provides similar overall yield,
but fewer monolayers, and TMD materials are notoriously more difficult to coax
into monolayer form.

Having identified potentially-useful 2D crystals optically, AFM is performed
on the crystals to establish the flatness and cleanliness (absence of hydrocarbons,
tape residue, or other contaminants), and possibly the thickness, although other
methods are typically more reliable for the latter. Crystals with clean surfaces
are then assembled into a heterostructure using a dry-transfer method that relies
on building the layered structure from the top, down. The top layer is picked up
first, using a special polymer stack on the underside of a glass slide mounted in
a micromanipulator (Fig. 9.1) [3]. Subsequent layers are then picked up using the
van der Waals interaction with the layer above so that the interface between the two
layers does not come into contact with any polymer or other contaminant. The layers
are picked up in this way sequentially, starting with the top layer and ending with
the bottom layer, at which point the entire heterostructure (suspended on the transfer
slide) is deposited onto a desired substrate by heating (and melting) the bottom
polymer layer, later removed with chloroform. Although the exposed surfaces of the
heterostructure come into contact with polymers and other chemicals, the interior
interfaces are kept atomically clean by the interlayer van der Waals interactions,
and thus it is possible to make extremely high-quality devices with this method.
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9.2 Initial Studies of Exfoliated Materials and Challenges

Presently, the methods described in Sect. 9.1 are successfully being carried out by
me and other users of the facility to fabricate heterostructures. My own work in
this area has led to preliminary studies of exfoliated materials in LEEM, as shown
in Fig. 9.2. Going forward, LEEM will certainly prove to be a valuable tool for
probing heterostructures of exfoliated materials due to the relative ease with which
samples can be prepared for study in LEEM. The expectation is that LEEM will
provide critical information regarding layer thicknesses (Sect. 3.5), interlayer crystal
orientations (Sect. 3.3), defect density (Sect. 5.1), and work function variations
(Sect. 4.3), among other quantities. As an extension to measuring point-to-point
variations in work function, there may be cases where spatially-resolved work
function mapping (see Fig. 9.2c, for example) can be illuminating, especially related
to transport phenomena such as contact resistances and spatial inhomogeneity.

That being said, there are challenges which must be overcome for using LEEM
to study structures that will also be measured with electrical transport. One of the
basic requirements of LEEM samples is that they are able to carry away excess
charge during imaging, so as to prevent charging (which has the effect of deflecting
the beam and thus detrimentally affecting the image). The simplest way around
this restriction for small crystals that may be semi-insulating is to place them on
an appropriate, conducting substrate. For example, the sample shown in Fig. 9.2
makes use of epitaxial graphene as a conducting substrate for imaging WSe2, which
may be insulating or semiconducting based on the position of the Fermi level (as
discussed in Sect. 4.4). For measuring transport, however, a conducting substrate is
usually undesirable since it makes contacting the device region with isolated leads a
difficult task. In addition, devices that require a top gate (for transport modulation)

Fig. 9.2 (a) Low-energy electron micrograph of mechanically exfoliated WSe2 on epitaxial
graphene on SiC, imaged at 4:4 V sample bias. Central bright region is many-layer WSe2, whereas
surrounding variegated regions are 3ML and 4ML graphene. (b) Another micrograph of the same
area at 2:6 V, with high contrast within the WSe2 due to partial electron transparency in the
lower (encircled) part of the crystal at this energy, revealing the pattern of graphene below the
WSe2 layers. (c) Relative work function map of the surface (electrostatic potential variation,
ıEvac) highlighting the large difference between WSe2 and graphene surfaces, calculated using
a modification of the method outlined in Sect. 2.2
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or encapsulation (for materials and properties that are sensitive to the environment)
will present additional challenges if they are to also be studied with LEEM, since
LEEM is most sensitive to the top-most atomic surface, and the electrons do not
generally penetrate more than a handful of atomic layers in total. These outstanding
questions will be addressed by me and other students in order to make correlated
measurements between LEEM and electrical transport in the near future.

9.3 Layered Heterostructures of 2D Materials
for Device Transport

Progress toward making devices from layered heterostructures is also ongoing.
Members of the Hunt group (users of the transfer facility) and I are currently
working to develop the nanofabrication processes needed to pattern and define
device boundaries, deposit contacts and gates, and wire bond the finished devices
into chip carriers designed for performing transport measurements. These projects
are currently in various stages of achievement, with the effort being led by Ben Hunt
and his student, Devashish Gopalan, in particular. In parallel, efforts are underway
to enable low-temperature transport with a liquid-He-cooled physical property
measurement system (PPMS), which will be greatly augmented by the addition
of a dilution refrigerator (an independent system which will allow cooling below
300 mK and will include a superconducting magnet for field-dependent transport
measurements) to the Hunt lab in the Fall of 2016.

In addition to these activities, I have personally been involved in a project
to fabricate monolayer graphene diodes led by Jeffrey Weldon and his student,
Mohamed Darwish. Toward this goal, I, with the help of students Jean-Yves
Desaules and Andrew Ye, have assembled a number of monolayer and bilayer
graphene structures supported by h-BN in order to achieve high mobility in lateral
transport through the graphene layers. Darwish has used the provided structures for
subsequent device nanofabrication steps (patterning and defining contacts) along
with multiple stages of characterization.

With these initial steps accomplished, current and future users of the exfoliation
and transfer facility will carry this work forward, with many more results from 2D
heterostructures and devices to follow.
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Chapter 10
Conclusions

In the course of this thesis, I have introduced two-dimensional (2D) materials and
their heterostructures as a new paradigm for the fields of physics and nanoscience.
I argued that layered heterostructures in particular, that is, individually-stacked
monolayers of different 2D crystals with deliberate arrangement, expand the
available parameter space for new physics and interesting phenomena greatly, and
within this space I have chosen to focus on interlayer transport in a few specific
structures. I outlined the method of low-energy electron microscopy (LEEM), its
utility for studying 2D materials, and its unique spectroscopic capabilities, which
have yet to achieve anywhere near the notoriety (let alone ubiquity) of optical, X-
ray, or scanning probe methods, despite its complementary relevance.

In Chaps. 3–5, I presented several examples of these capabilities. I showed
that electron reflectivity spectra from the surface of few-layer WSe2 on epitaxial
graphene allow direct discrimination of the number of WSe2 layers at each point
in a collected series of images. A similar method was previously applied to few-
layer graphene and h-BN by other workers, however, the situation for WSe2 is
far more complex due to a high level of state-mixing in the WSe2 band structure
and non-trivial inelastic considerations. By carefully sorting out these details, I
have developed a method for unambiguously identifying monolayer, bilayer, and
trilayer WSe2, and hopefully provided insight for applying similar analyses to other
transition metal dichalcogenide (TMD) materials.

Considering the interface between two dissimilar 2D materials, I used the very-
low energy part of reflectivity spectra to measure relative work function differences
between WSe2–epitaxial graphene and MoSe2–epitaxial graphene. In the former
case, a large difference in work function between the WSe2 and graphene was
associated with Schottky barrier tunneling in conducting-AFM measurements of
transport between the layers, whereas a negligible difference in work function
resulted in ohmic contact between the TMD and graphene. The quantitative results
for work function differences in the two cases were used to model a charge transfer
process that provided an explanation for the change in transport behavior.
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124 10 Conclusions

From a methodology standpoint, there are two significant points regarding the
results of this work. Firstly, it is worthwhile to reflect on the fact that LEEM is a
tool that directly probes unoccupied, unbound states that exist above the vacuum
level. On the other hand, the conclusions drawn from the analyses in Chap. 4 are
related to electrical transport phenomena, which are manifestly relevant to states
near the Fermi level, far below what is directly accessible by LEEM electrons.
Therefore, I will emphasize here that LEEM not only probes a complementary
part of the solid state energy spectrum with respect to other methods, but that
measurements obtained from this unusual high-energy domain can be related to
everyday phenomena such as electrical conduction.

As a second point of this examination, based on the collection of LEEM methods
presented in this thesis, it is remarkable from the perspective of other, more involved
experimental methods, which require contacts, patterning, or other forms of sample
preparation, that the measurements gleaned from such methods are even possible
from what essentially amounts to imaging of surfaces. As a final application of the
LEEM methods developed in the earlier chapters, large work function differences
between MoSe2 and epitaxial graphene were measured and provided as evidence (in
tandem with diffraction) of enormous defect density in the MoSe2 films.

In Chaps. 6–8, efforts from a parallel thrust aimed at modeling interlayer tun-
neling between 2D materials were described and employed to provide predictions
of novel phenomena. Beginning with the general theory established by Bardeen,
and the adaptation of that theory to two dimensions by Feenstra et al. [1], I
presented models for computing tunneling currents between graphene sheets with
arbitrary gate modulation, coherence length, crystallographic misorientation, and
an advanced treatment of the tunneling barrier. The primary prediction of this work
is resonant tunneling behavior that depends strongly on the aforementioned char-
acteristics of the junction. The model was extended to bilayer graphene tunneling
junctions, and additional phenomena resulting from the unique band structure of
bilayer graphene were illustrated. These predictions were compared to experimental
results measured in monolayer and bilayer graphene based tunneling devices, and
the agreement between the computed and measured tunneling characteristics was
shown to be quite remarkable.

Finally, in Chap. 9 progress toward my own experimental realizations of layered
2D heterostructures and interlayer tunneling devices were discussed in the context
of my involvement in contributing to a collaborative research center at Carnegie
Mellon University. With on eye toward prospective outcomes emerging from these
ongoing efforts, I have great confidence that many new and interesting results
pertaining to layered 2D heterostructures are imminent.
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Appendix A
2D–2D Tunneling in the Zero-Coherence-Length
Limit

We briefly comment on one additional aspect of the tunneling formalism introduced
in Chap. 7, namely, the use of the density-of-states formula of Eq. (7.1) for
computing tunneling current [1]. This formula is commonly used in tunneling com-
putations, although obtaining an absolute magnitude of the current is problematic
with this approach since it is not obvious what the appropriate pre-factors in front of
the integral should be. Of course, with the full theory of Eq. (7.2), we can obtain a
current with well-defined magnitude. Also, in the limit of L ! 0 of that theory, it is
easily shown that we recover Eq. (7.1). However, when we compute currents in that
limit, i.e. for smaller and smaller L values, then the currents that we obtain (actually
they are current densities, since the computation is for a specific L2 area) become
unphysically small. The question we must address is, what is the fundamental source
of this decrease in current density for L ! 0, and can we somehow produce a current
density whose magnitude is physically meaningful even in this limit.

The origin of the unphysical L ! 0 limit of the full theory of Eq. (7.2),
when evaluated together with Eq. (7.4) or (7.6) and Eq. (7.7) or (7.10), arises
from our assumption of limiting the area over which the surface integral in
Eq. (7.2) is performed. For very small L values, we then encounter a situation
in which the tunneling is restricted to a small area of one electrode over to
the same small area of the opposite electrode. This restriction is invalid since
we are ignoring the tunneling to neighboring areas in the opposing electrodes.
That is, we must consider spreading (dispersion) of these states as they extend
across the barrier. To properly deal with this situation, we construct states on each
electrode that are restricted to an area L, hence with wavefunctions proportional
to Œ‚.x C L=2/ �‚.x � L=2/
Œ‚.y C L=2/ �‚.y � L=2/
eik�r where ‚.x/ is a
Heaviside step function. We Fourier transform these wavefunctions in order to
deduce their dispersion in the barrier, with each Fourier component extending into
the barrier with an exponential decay constant

�0 D
p
�2 C �2; (A.1)
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126 A 2D–2D Tunneling in the Zero-Coherence-Length Limit

(assuming equal effective masses in the lateral and perpendicular directions) where
� � j�j denotes the lateral wavevector variable in the Fourier transform. On each
electrode the total wavefunction is written as a summation of such states, localized
on adjoining areas. We then work through the Bardeen formalism.

For a given state restricted to an area A D L2 of the left-hand electrode, we can
evaluate contributions to the matrix element Eq. (7.3) from the overlap of that state
with states from all areas of the right-hand electrode. To illustrate our result, we
compare it to the surface integral in Eq. (7.7), for the case of zero misorientation
and where we include a �e��d term in that integrand (i.e. from the prefactor of
Eq. (7.4)). Whereas Eq. (7.8) was obtained by using an ad hoc restriction of this
surface integral over the area A, we now have a more rigorous treatment using our
constructed wavefunctions. The term analogous to Eq. (7.7) then becomes

1

A

Z
dS �e��dei	k�r ! A

.2�/2

X

m;n

Z 1

�1
d�x

Z 1

�1
d�y �

0e��0d

� sinc

�
.�x � kR;x/L

2

�
sinc

�
.�y � kR;y/L

2

�

� sinc

�
.�x � kL;x/L

2

�
sinc

�
.�y � kL;y/L

2

�

� eiŒ.�x�kR;x/mL.�y�kR;y/nL


(A.2)

where m and n label areas of the right-hand electrode, both extending over 0, ˙1,
˙2, : : : .

The m D n D 0 term of the summation on the right-hand side of Eq. (A.2)
dominates for large L, and in that case the expression on the left-hand side of
the equation (evaluated as in Eq. (7.8)) is recovered. The additional terms in that
sum are negligible for L > 10 nm, but they make important contributions for
smaller L values. Performing the complete summation for small L values becomes
computationally demanding. However, we find for the parameters of our simulations
described in Sect. 7.4 (1:34 nm-wide tunnel barrier with tunneling decay constant
6 nm−1), the results of the full summation for L ! 0 match well to the result of
including only the m D n D 0 term but with the fixed value of L D 1:4 nm.
Therefore, to incorporate an absolute scale of current densities on computations
employing Eq. (7.1), we can simply adjust the magnitude of the results so that they
match that of a computation employing Eq. (7.4) together with Eq. (7.10) using
L D 1:4 nm.

We note that the voltage-dependence of the computation using Eqs. (7.4)
and (7.10) with L D 1:4 nm is very close to that obtained with Eq. (7.1), so in
principle we could simply use the former to report the results. Nevertheless it
is desirable to use the latter for computations in which no trace of momentum
conservation is evident in the experimental data, while at the same time including
an estimate of the absolute magnitude for those current densities. We achieve that
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goal by matching the magnitudes of the two computational results. Of course, this
same procedure would be necessary (and would yield similar results) if employing
the theory of Ref. [2], i.e. Eq. (7.6) together with Eq. (7.9) or (7.10), for very large
qc values.
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Appendix B
Details of Resonant Tunneling Model
for Graphene and Its Bilayers

The following sections provide additional details regarding the analytic portion
of the momentum-conserving 2D–2D tunneling calculation, including wavevector
matching (for computing current) and densities-of-states (for solving electrostatics).

B.1 Monolayer Graphene

For comparison to the more complicated cases, I will reproduce the equations that
govern resonant tunneling for the monolayer graphene case with elastic scattering.
Using the Bardeen formalism, we have for the tunneling current

Ielas D gVgS
2�e

„
X

˛ˇ

ˇ̌
M˛ˇ

ˇ̌2�
fL.E˛/ � fR.Eˇ/

	
ı.E˛ � Eˇ/: (B.1)

which involves a sum over all states ˛, ˇ in each graphene electrode. The matrix
element M˛ˇ is evaluated using graphene basis functions in Bloch form to obtain

MkRkL D „2
2m

�e��d

D
g!.�R; �L/

1

A

Z
dS eiQ�rei.kR�kL/�r; (B.2)

which allows us to write the current as a sum over wavevectors,

Ielas D gVgS
2�e

„
� „2
2m

�2X

kRkL

�
�e��d

D

�2
jƒ.	k/j2ŒfL.EL/ � fR.ER/
ı.EL � ER/;

(B.3)
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with ƒ.	k/ D g!
A

R
dS eiQ�rei	k�r where 	k D kR � kL and the surface integral is

taken over an area defined by the phase coherence length, L. To evaluate the delta
function which enforces energy conservation, we must convert the sums over all
states to integrals, and rewrite ı.EL � ER/ in terms of wavevectors. Using the linear
approximation to the monolayer graphene dispersion E.k/ � „vFk, we write the
energy in each electrode as Ei D E.ki/C�i, where �i is the electrostatic potential at
the Dirac point, and hence for the energy range above both Dirac points (REGION I).

EL � ER D E.kL/ � E.kR/C �L � �R D „vF.kL � kR/C eV 0; (B.4)

where eV 0 D �L � �R is the electrostatic potential difference between the graphene
electrodes. We replace the delta function of EL � ER with a version in terms of k,

ı.f .kR; kL// ! ı.kR � k0/

jf 0.k0/j ; (B.5)

where the zero of f .kR; kL/ is found using Eq. (B.4) to be

REGION I: k0 D kL C eV 0=„vF D kL C k0; (B.6)

with k0 D eV 0=„vF. From this, it follows that jf 0.k0/j D „vF. This new delta
function removes the integral over the magnitude of kR, leaving two angular integrals
and the integral over kL. For the energy range below both Dirac points (REGION III),
the energies are negative with respect to the charge neutrality point E.k/ � �„vFk
and thus

EL � ER D �„vF.kL � kR/C eV 0; (B.7)

which yields

REGION III: k0 D kL � k0: (B.8)

Similarly, in the energy range between the two Dirac points (REGION II), one energy
is positive while the other is negative, and generally

REGION II: k0 D ˇ
ˇk0ˇˇ � kL: (B.9)

In order to properly determine the electrostatics, one must also compute the
number of carriers in each electrode which requires the density of states. For
a dispersion relation of E.k/ � „vFk in two dimensions with spin and valley
degeneracy factors of 2, the occupation factor for each level is

n.k/ D gVgS
1

.2�/2
�k2 D 1

�

�
E

„vF

�2
; (B.10)
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and thus the density of states is

�.E/ D dn

dE
D 2

�

jEj
.„vF/2

: (B.11)

From this, we calculate the electron and hole density in each electrode using

ni D
Z 1

�i

dE
�.E � �i/

e.E��i/=kT C 1
D � 2

�

�
kT

„vF

�2
Li2

��e.�i��i/=kT
�

(B.12a)

pi D
Z �i

�1
dE

�.E � �i/

e.�i�E/=kT C 1
D � 2

�

�
kT

„vF

�2
Li2

��e.�i��i/=kT
�
; (B.12b)

with the second-order polylogarithm, Li2.z/. In the limit that T ! 0, the Fermi-
Dirac function approaches a step-function, and the total number of carriers reduces
to

lim
T!0

ni D
Z 1

�i

dE �.E � �i/‚.E � �i/ D 1

�

�
�i � �i

„vF

�2
: (B.13)

B.2 Bilayer Graphene: Parabolic Dispersion

The simplest model for bilayer graphene assumes a parabolic dispersion E.k/ �
˛k2, with the coefficient of proportionality ˛ D .„vF/

2=t? (with interlayer hopping
energy t?) extracted from the tight-binding method. Borrowing Eq. (B.3) from the
monolayer case, we proceed to evaluating the delta function ı.EL � ER/ for each of
the relevant energy regions. In REGION I, above both Dirac points (conduction- to
conduction-band tunneling) we have

EL � ER D ˛
�
k2L � k2R

�C eV 0; (B.14)

which tends to zero at

REGION I: k0 D
q

k2L C eV 0=˛ (B.15)

with the derivative jf 0.k0/j D 2˛k0 evaluated at that point. In REGION III (valence-
to valence-band tunneling) both energies are negative and therefore

EL � ER D �˛ �k2L � k2R
�C eV 0; (B.16)
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which gives us f .k0/ D 0 for

REGION III: k0 D
q

k2L � eV 0=˛: (B.17)

In REGION II (unlike-band tunneling), we must examine separate cases for each
sign of eV 0. Doing this, we obtain one equation which holds for both zeros (here
k02 D jeV 0j=˛),

REGION II: k0 D
q

jeV 0j=˛ � k2L D
q

k02 � k2L: (B.18)

For the electrostatics calculation, we can simply replace the k2 in Eq. (B.10) with
the rearranged dispersion relation k2 D jEj=˛ to obtain

n.k/ D gVgS
1

.2�/2
�k2 D jEj

�˛
: (B.19)

Taking the derivative with respect to energy, we calculate the density of states

�.E/ D dn

dE
D 1

�˛
; (B.20)

which is constant (a well-known result for parabolic dispersion in two dimensions).
The charge densities for each graphene sheet are then easily obtained for finite
temperature,

ni D 1

�˛

Z 1

�i

dE
1

e.E��i/=kT C 1
D kT

�˛
ln
�
1C e.�i��i/=kT

�
(B.21a)

pi D 1

�˛

Z �i

�1
dE

1

e.�i�E/=kT C 1
D kT

�˛
ln
�
1C e.�i��i/=kT

�
; (B.21b)

as well as in the low-temperature limit,

lim
T!0

ni D 1

�˛

Z 1

�i

dE‚.E � �i/ D j�i � �ij
�˛

: (B.22)

Curiously, when we calculate the net charge using the temperature-dependent
forms shown in Eqs. (B.21a) and (B.21b), we find that the result is independent
of temperature and equal to Eq. (B.22),

ni � pi D kT

�˛

�
ln
�
1C e.�i��i/=kT

� � ln
�
1C e.�i��i/=kT

�	 D j�i � �ij
�˛

: (B.23)
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B.3 Bilayer Graphene: Hyperbolic Dispersion

Although the parabolic approximation to the bilayer graphene dispersion is appro-
priate for very small energies, the true bilayer dispersion quickly becomes non-
parabolic as one extends out to energies that are relevant for off-resonance currents
(high-voltage behavior). These effects can be captured by writing the dispersion in
a hyperbolic form which is parabolic for „vFk � t? and linear in the opposite limit
„vFk � t?,

E � t?
2

�q
1C .k=kc/

2 ˙ 1

�
; (B.24)

with the transitional value kc D t?=2„vF between the two regimes, and where the
upper (lower) sign corresponds to the higher (lower) energy sub-band. For conve-
nience, we define h.k/ � p

1C .k=kc/2. Considering only the lower conduction
bands of both electrodes, we write the argument of the delta function in Eq. (B.3) as

EL � ER D t?
2
Œh.kL/ � h.kR/
C eV 0; (B.25)

and we find that the zero occurs when

REGION I: k0 D kc

q
Œh.kL/C 2eV 0=t?
2 � 1: (B.26)

The derivative of Eq. (B.25) gives us jf 0.k0/j D 2˛k0=h.k0/. In REGION III
(considering only the upper valence bands), we have negative energies and

EL � ER D � t?
2
Œh.kL/ � h.kR/
C eV 0: (B.27)

The zero of this equation is

REGION III: k0 D kc

q
Œh.kL/ � 2eV 0=t?
2 � 1: (B.28)

In the unlike-band tunneling region, we evaluate the two cases of positive and
negative eV 0 to obtain

REGION II: k0 D kc

q
Œh.kL/ � 2jeV 0j=t? � 2
2 � 1: (B.29)

Before we begin calculating the carrier densities required for electrostatics, we must
first invert the dispersion shown in Eq. (B.24) (for the lower sign),

k2 D
�
2k0
t?

�2
jEj�jEj C t?

� D jEj
.„vF/2

�jEj C t?
�
: (B.30)
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We use this equation to determine the occupation factor for each k,

n.k/ D gVgS
1

.2�/2
�k2 D jEj

�.„vF/2

�jEj C t?
�
; (B.31)

and take the derivative to get the density of states

�.E/ D dn

dE
D 2jEj C t?

�.„vF/2
D 1

�˛
C 2

�

jEj
.„vF/2

; (B.32)

which is in fact a sum of the monolayer and parabolic densities of states. As such,
the carrier densities will be sums of the monolayer and parabolic cases as well;

ni D kT

�˛
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1C e.�i��i/=kT
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and in the low-temperature limit,

lim
T!0

ni D j�i � �ij
�˛

C 1

�

�
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Appendix C
Resonant Tunneling Between Transition
Metal Dichalcogenides

The following sections extend the band model for graphene–graphene interlayer
tunneling to enable calculation of tunneling current between semiconducting transi-
tion metal dichalcogenides. The described model uses an approximate form for the
semiconducting bands around the K and K0 points of the Brillouin zone, and neglects
the details of the TMD wavefunctions, which in general will be more complicated
than those of graphene.

C.1 Tight-Binding Model and Dispersion

Following the discussion of a simple tight-binding model for monolayers of
transition metal dichalcogenides (TMDs) by Liu et al. [1], we approximate the low-
energy behavior of electrons by expanding the tight-binding Hamiltonian around the
K-point. Keeping only the lowest order term, we write the reduced k � p two-band
Hamiltonian as

H0.k/ �
�

	=2 „v.�kx � iky/

„v.�kx C iky/ �	=2
�

D
�

	=2 �„vke�i��

�„vkei�� �	=2
�
; (C.1)

where k D jkj, � D arctan
�
kx=ky

�
, � D ˙1 is a valley-index, 	 is the band gap of

the TMD, and „v D at in the notation of Liu et al. The eigenvalues for this simple
model are hyperbolic,

E.k/ D ˙1

2

p
.2„vk/2 C	2: (C.2)

It is possible at this stage to make a simple, parabolic “effective mass” approxima-
tion using this result by expanding to lowest order in k,
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E.k/ D ˙1

2

�
	C .2„vk/2

2	
C O�k4�

�
� ˙

�
	

2
C „2k2
2m�

�
; (C.3)

with m� � 	=2v2, but the hyperbolic form is at least as compact and a bit more
accurate. We can go a bit further by including spin-orbit coupling (which is relevant
in many 2D TMDs) according to the prescription by Liu et al.,

HS–O � H0.k/C
�
0 0

0 �s�

�
; (C.4)

for spin-orbit perturbation parameter � (see Table IV of Ref. [1]) and spin-index
s D ˙1. The eigenvalues including spin-orbit coupling now take the form,

Es;� .k/ D 1

2

h
�s�˙

p
.2„vk/2 C .	 � �s�/2

i
: (C.5)

The valley-index � appears explicitly in the dispersion, indicating that the valley
degeneracy has been lifted by spin-orbit splitting. However, we cannot distinguish
between the spin-states in our device (or rather, between the states involved in spin-
orbit splitting), so we can ignore the valley-index and retain a valley degeneracy
factor of gv D 2,

Es.k/ D 1

2

h
s�˙

p
.2„vk/2 C .	 � s�/2

i
: (C.6)

This dispersion relation is compact enough for direct use in our tunneling cal-
culation, while also properly capturing the non-parabolicity of the bands at low
energies as well as the primary effect of spin-orbit coupling, which is asymmetric
for electrons versus holes (Fig. C.1). This model will likely be sufficient for
computation for both like-band and unlike-band tunneling modes. In particular,
the band-splitting from spin-orbit coupling will properly capture the effect on the
density of states near the band edge, which governs the turn-on characteristic of a
device based on unlike-band tunneling, a tunneling field-effect transistor (TFET).

C.2 Energy-Conservation Between Tunneling States
in Transition Metal Dichalcogenides

The modification in the energy-conservation term between monolayer graphene
devices and TMD devices is straightforward. The delta function ı.EL � ER/ must
be rewritten in terms of the wavevector in each electrode and summed over the
available bands,

ı.EL � ER/ !
X

i

ı.k � ki/

jf 0.ki/j ; (C.7)
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Fig. C.1 Energy versus
wavevector Es.k/ around the
K-point using a first-order
two-band effective
Hamiltonian with spin-orbit
coupling (solid, blue), and a
parabolic effective mass
approximation (dashed, red).
Energy axis in units of eV
and k-axis in nm−1
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where the sum index i runs over s D ˙1 for both the conduction and valence bands
(four terms in total). Here, f refers to the original argument of the delta function and
ki are the zeros of that function,

f � EL � ER D Eṡ .kL/ � E˙0

s0 .kR/C �L � �R: (C.8)

Solving this expression for zero will require the inversion of Eq. (C.6),

ks.E/ D 1

2„v
p
.2E � s�/2 � .	 � s�/2; E 	 	

2
or E � �	

2
C s�: (C.9)

Using Eq. (C.9) to evaluate the solution of f D 0 yields

ki D kṡ

h
E˙0

s0 .kR/ � eV 0i ; (C.10)

with eV 0 D �L � �R and where the band gaps 	L, 	R and spin-orbit parameters
�L, �R are defined separately for each material. The zeros ki define the relationship
between the magnitude of wavevectors imposed by energy conservation, and will
differ for each of the three energy regions in the tunneling calculation. The limits
of each region in TMDs will extend from the band edges instead of from the Dirac
point, as in monolayer graphene. This is similar to the case of bilayer graphene,
where the band gap creates bands of energy in which no tunneling can occur.

C.3 Density of States and Occupation of Levels

There are several ways to write the density of states; here, I will use

�s D gv
2�

ks

ˇ̌
ˇ̌dks

dE

ˇ̌
ˇ̌; (C.11)
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summing over spin states and the conduction and valence bands to get the total
density of states. Using Eq. (C.9) we write

dks

dE
D 2E � s�

„vp.2E � s�/2 � .	 � s�/2
: (C.12)

which gives

ks

ˇ̌
ˇ̌dks

dE

ˇ̌
ˇ̌ D j2E � s�j

2�.„v/2 : (C.13)

In the conduction band, E > 0 (also E > 	=2 � �) and the density of electron
states (summing over spin) takes the form

�e.E/ D 2

�

E

.„v/2‚.E �	=2/: (C.14)

Due to the splitting of hole bands, there are two terms for the hole density of states,

�h.E/ D 1

2�.„v/2
˚j2E � �j‚.�	=2C � � E/C j2E C �j‚.�	=2 � � � E/

�
:

(C.15)

The total density of states is the sum of the electron and hole parts � D �eC�h. There
is a notable step in the hole density of states due to spin-orbit splitting. In Fig. C.2,
we see that this effect is quite distinct from the equivalent density of states one gets
in the effective mass approximation, as shown by the red, dashed line which exhibits
a simple step-function behavior. This feature may be important for the TFET device
since such operation always involves tunneling from one conduction band to the
valence band in the other layer.

Fig. C.2 Total density of
states versus energy in units
of eV (solid, blue). Dashed
blue lines indicate separate
spin contributions. Red dotted
lines show the equivalent
density of states from the
parabolic effective mass
approximation in Section 1

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

1
2
3
4
5
6
7



Reference 139

Fig. C.3 Total carrier
density (black, dashed line)
n C p (nm−2) as a function of
Fermi level (eV). Separate
electron (red, solid) and hole
(blue, solid) densities are
shown as well
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For the electrostatics of TMD devices we will need carrier densities for each
TMD layer. The electron density is obtained by integrating Eq. (C.14) with the Fermi
occupation function,

n D 2

�.„v/2
Z 1

	=2

dE
E

1C e.E��/=kT

D 	

�.„v/2 kT ln
�
1C e.��	=2/=kT

� � 2

�

�
kT

„v
�2

Li2
��e.��	=2/=kT

�
: (C.16)

The hole density is obtained similarly, albeit with a few more terms,

p D 1

2�.„v/2
( Z �	=2C�

�1
dE

j2E � �j
1C e.��E/=kT

C
Z �	=2��

�1
dE

j2E C �j
1C e.��E/=kT

)

D .	 � �/
2�.„v/2 kT ln

�
1C e.�	=2C���/=kT

� � 1

�

�
kT

„v
�2

Li2
��e.�	=2C���/=kT

�

C .	C �/

2�.„v/2 kT ln
�
1C e�.	=2C�C�/=kT

� � 1

�

�
kT

„v
�2

Li2
��e�.	=2C�C�/=kT

�
:

(C.17)

The total carrier density n C p is shown as a function of Fermi level in Fig. C.3, with
a kink caused by the jumps in hole density for negative Fermi energies. Total charge
is defined as q D �en C ep.
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